Journal of Parallel and Distributed Computing 61, 662-666 (2001) &
doi:10.1006/jpdc.2000.1706, available online at http://www.idealibrary.com on IBE):i" f\/l 5@

A Parallel Algorithm for Partitioning a Point Set
to Minimize the Maximum of Diameters

Muhammad H. Alsuwaiyel

Department of Information and Computer Science, King Fahd University of Petroleum and Minerals,
Dhahran 31261, Saudi Arabia
E-mail: suwaiyel@ccse.kfupm.edu.sa

Received November 25, 1998; revised October 21, 1999; accepted October 31, 2000

Given a set S of n points in the plane, we consider the problem of parti- -
tioning S into two subsets such that the maximum of their diameters is
minimized. We present a parallel algorithm to solve this problem that runs
in time O(logn) using the CREW PRAM with 0(n?) processors. © 2001
Academic Press

1. INTRODUCTION

Let S be a set of n points in the plane. The problems of partitioning S into k
partitions, or covering S with k convex objects (e.g., disks) are intractable. When the
number of partitions or convex objects is restricted to two, a number of algorithms
can be applied in order to meet a given criterion. For the case when the problem
is partitioning S into two partitions S; and .S, and the criterion is to minimize the
maximum of the two diameters, Avis [3] gave a sequential algorithm to solve this
problem in O(n?log® n) time and O(n?) space. Later, Asano et al. [2] improved the
bound to O(nlogn) time and O(n) space. Another O(nlog n) time algorithm that
is simpler was given by Monma and Suri [4]. Other parallel algorithms for this
problem were not found in the literature.

In this paper, we present a special purpose parallel algorithm to solve this
problem that runs in time O(log n) using the CREW PRAM model of computation
with 0(n*) processors.

2. THE STRUCTURE OF AN OPTIMAL BIPARTITION

For simplicity, we will assume that each point has only one farthest neighbor.
Modifying the algorithm to the more general case where a point may have more
than one farthest neighbor is easy. If p and ¢ are two points in S, we will denote
by d(p, q) the Euclidean distance between p and g. For 4 < S, we define Diam(A)

0743-7315/01 $35.00 662
Copyright © 2001 by Academic Press
All rights of reproduction in any form reserved.

PARTITIONING A POINT SET 663

to be the diameter of 4, that is, the largest distance realized by two points in A.
A bipartition {4, B} will be called optimal if the maximum of the two diameters
of 4 and B is minimum among all bipartitions of S. For each point p in S,
let f(p) denote the farthest neighbor of p. In general, we define f°(p)=p, and

f1(p)=1f7"1(p))

DeFINITION 1. Let C= S and €' =S— C such that for all pe C and all ge C',
f(p)eC’ and f(gq)e C. Then C and C’ will be called clusters and the pair (C, C’)
a cluster pair.

The following lemma provides the basis for the algorithm to be developed. ,

LemMa 1. Let {A, B} be a bipartition of the set of points in S, and pe A. If
f(p) € A, then max{Diam(A4—{p}), Diam(Bu { p})} < max{Diam(A), Diam(B)}.

Proof. Let D =max{Diam(A), Diam(B)}, and suppose that both p and f(p) are
in 4. If for all x e S, d(p, x) < D, then moving p to B will not increase the maximum
of diameters. On the other hand, if for some x€S, d(p, x)=D, then since D=
d(p, x) <d(p, f(p)), moving p to B will not increase the maximum of diameters. It
follows that in both cases

max{Diam({A —{ p}), Diam(Bu {p})} <D.

COROLLARY 1. There is an optimal bipartition {A, B} such that for all cluster
pairs (C, C"), either C< A and C’' < B or vice versa.

The function f defined above has the property that if ¢= f(p), w= f(gq) and
p#w, then d(p,q)<d(q,w). In general, for any j>1 and any point peS, if

SN (p)# /7 (p), then

d(f’="(p), f7(p)) <d(f’(p), /7 (P))- (1)

FIG. 1. Partitioning the points into clusters.

b 4

664 MUHAMMAD H. ALSUWAIYEL

FIG. 2. One component of the graph.
For example, in Fig. 1,
d(u, v) <d(v, w) <d(w, x) <d(x, y)=d(y, x).

In this figure, f(p) =g is represented by an arrow directed from p to ¢. f(p) = ¢ and
J(g) = p is represented by a line segment with arrows at both ends. For clarity, only
one point not on the convex hull is shown.

Thus, f induces a directed graph G = (S, E) with the property that the only cycles
in G are of length 2, and they are pairs of points (p, g) such that f(p)=gq and
f(q)= p. Since, by assumption, f is a function (each point has exactly one farthest
neighbor), it follows that if G contains more than one cycle, then it is disconnected.
By Inequality 1 and the definition of a cluster pair, each cluster pair (C, C') con-
tains exactly two points p € C, and g € C, such that f(p) = g and f(g) = p. It follows
that each component of the directed graph corresponds to exactly one cluster pair.
Figure 2 shows the component of the directed graph G corresponding to the cluster
pair ({v, x}, {z, w, y, u}) shown in Fig. 1. Note that all points in the interior of the
convex hull are leaves in their respective components.

For any component H of the graph G corresponding to a cluster pair (C, C’), let
ry and r, denote the two points constituting the cycle in H. Define the function
g(p)= f*(p). Since there is only one cycle in H whose vertices, namely r; and r,,
are reachable from all other points in H, g(p) is either r, or r,. As g(p) is within
even edge distance from p, g(p) is in the same cluster as p. Consequently, the func-
tion g induces two shallow directed trees rooted at r, and r,. Each tree consists of
a root r and a number of children that point to it, namely those points within even
distance from r. Thus, each directed tree represents exactly one cluster, and each
cluster is represented by a directed tree. As an example, the component shown in
Fig. 2 is transformed by the function g into the two directed trees shown in Fig. 3.
It follows that H is transformed by g into two directed trees corresponding to C
and C". It should be noted that both the directed graph defined by f and the directed
trees defined by g are represented by the algorithm using two arrays of size n.

|

FIG. 3. Two trees corresponding to two clusters in a cluster pair.

<> =

u w

PARTITIONING A POINT SET 665

Let P be the polygon formed by the points on CH(S), the convex hull of S. It
is well known that for all pe S, f(p) is a vertex of P. Let k be the number of cluster
pairs and C, be any cluster. For 1< j<2k—1, let C; be such that C; n CH(S)
follows C;_; n CH(S) in a clockwise traversal of the boundary of P. It is fairly easy
to show that for 0< j<k—1, (C;, C;,,) is a cluster pair. By Corollary 1, we may
assume that C; belongs to one partition, and C;,, belongs to the other. Clearly,
each partition must consist of exactly k adjacent clusters, that is, their intersection
with CH(S) consists of one polygonal chain. As a result, there are only k possibilities
for bipartitioning S with the property that the two clusters in a cluster pair are assigned
to different partitions. By exhaustively computing the & maximums of diameters, the
partitioning that results in the minimum of these maximums is selected.

3. THE PARTITIONING ALGORITHM

The partitioning algorithm can now be described as follows.

1. Compute CH(S), the convex hull of S, and let A= |CH(S)|. This takes
O(log n) time using O(n) processors [1].

2. For each point pe S, allocate [A/log h7] processors. Since f(p)e CH(S),
these processors will compute f(p) in O(log 4) time.

3. In this step we construct the function g using pointer jumping in which
each processor associated with point p executes the assignment f(p)= f(f(p))
repeatedly until /(f(f(p))) = f(p). The number of applications of the function f is
O(log n), as the size of each component is O(n) and the unique cycle it contains is
of length 2. Hence, at the end of this step, we will have computed the 2k clusters
as directed trees. We number them clockwise around the boundary of CH(S) as
Cy, Cy, .., Cy 1, where Cy is chosen arbitrarily. Finally, we assign label j to every
point in cluster C;.

4. Label kn processors as P, ;, 0< j<k—1,1<i<n
For j=0, 1, ..,k —1 do in parallel: Processors P;;, 1 <i<n, partition the point
set into S; and S, where S, is the set of points whose label is in {j, j+1,..,
Jj+k—1}, and S} is the set of points whose label is in {j+k, j+k+1, .., j—1}.
Compute Diam(S;) and Diam(S}). Computing the two diameters using » processors
takes O(logn) time [1]. Thus, the total time required in this step is O(log n) using
kn = O(hn) processors, as h is an upper bound on the number of clusters.
5. Among the pairs (Dy, Dy), (D,, DY), «., (Dr_y, Dy_,), Return that pair
(D;, D}) in which max{D;, Dj} is minimum, and the corresponding partitions.
Figure 4 shows an example in which the set of points is partitioned into 8
clusters. In this example the following 8 diameters are computed in parallel:

Dy=Diam(Cy v C, uC, U Cs) Dy = Diam(C, v Cs L Cg U C5)
D, =Diam(C, v C, uC5 U Cy) D = Diam(Cs v Cg U C; U Cyp)
D, = Diam(C, u C; uC, u Cy) D', = Diam(Cg v C; L Cy L C))
() (

Dy=Diam(C5; u C, uCsu C¢ D5 = Diam(C, u Cyu C, L Cy).

R

666 MUHAMMAD H. ALSUWAIYEL

FIG. 4. The point set partitioned into 2k clusters.

ACKNOWLEDGMENTS

The author is grateful to King Fahd University of Petroleum and Minerals for their continual support
and also thanks the reviewers who helped enhance the presentation of this paper.

REFERENCES

1. 8. G. Akl and K. A. Lyons, “Parallel Computational Geometry,” Prentice-Hall, Englewood Cliffs,
NJ, 1993.

2. T. Asano, B. K. Bhattacharya, J. M. Keil, and F. F. Yao, Clustering algorithms based on minimum
and maximum spanning trees, in “Proc. of the Fourth Annual Symposium on Computational
Geometry,” pp. 252-257, 1988.

3. D. Avis, Diameter partitioning, Discrete Comput. Geom. 1 (1986), 265-276.

4. C. Monma and S. Suri, Partitioning points and graphs to minimize the maximum or the sum of

diameters, in “Proceedings of the Sixth International Conference on the Theory and Applications of
Graphs,” pp. 899-912, Wiley, New York, 1989.

Printed by Catherine Press, Ltd., Tempelhof 41, B-8000 Brugge, Belgium

