NH,
£ PARALLEL
L% COMPUTING

ELSEVIER Parallel Computing 27 (2001) 861-865

www.elsevier.com/locate/parco

Short communication

An optimal parallel algorithm for the
multiselection problem

Muhammad H. Alsuwaiyel

Department of Information and Computer Science, King Fahd University of Petroleum and Minerals,
Dhahran 31261, Saudi Arabia

Received 27 July 1998; received in revised form 3 November 1999; accepted 29 June 2000

Abstract

Given a set S of n elements drawn from a linearly ordered set, and a set K = {ki, k2, ..., k. }
of positive integers between 1 and n, the multiselection problem is to select the k;th smallest
element for all values of i,1<i<r. We present a simple optimal algorithm to solve this
problem that runs in O(n‘logr) time on the EREW PRAM with n!~¢ processors,
0 <e< 1. © 2001 Elsevier Science B.V. All rights reserved.

Keywords.: Algorithms; Parallel algorithms; Selection; Multiselection

1. Introduction

Let S be a set of n elements drawn from a linearly ordered set, and let
K ={ki,ky,... k. } be aset of positive integers between | and #, that is a set of ranks.
The multiselection problem is to select the k;th smallest element for all values of
i,1<i<r. If r =1, then we have the classical selection problem. On the other hand,
if ¥ = n, then the problem is tantamount to the problem of sorting. Recently, Shen [4]
presented an optimal parallel for multiselection that runs in time O(n°logr) on the
EREW PRAM with n'~¢ processors, 0 < € < 1. We will show that the multiselection
problem can easily be solved using an adaptive algorithm that runs in O(n‘logr)
time on the EREW PRAM with n'~ processors, 0 < € < 1, by slightly modifying the
adaptive parallel quicksort algorithm in [1,2]. The algorithm that will be presented
can be thought of as a generalization of the paradigm given in [4].

E-mail address: suwaiyel@kfupm.edu.sa (M.H. Alsuwaiyel).

0167-8191/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0167-8191(00)00095-8

862 M.H. Alsuwaiyel | Parallel Computing 27 (2001) 861-865

Due to the resemblance of the multiselection problem to the sorting problem, it is
natural to ask if an algorithm for the latter can be modified so that it solves the
former. It turns out that a slight modification of the parallel quicksort algorithm
results in an optimal algorithm for the multiselection problem. Let select be a @(n)
sequential selection algorithm. The shown below solves the multiselection problem in
time O (nlogr). We will assume that the set of ranks K = {k;, %, ...,k } is sorted in
increasing order. If not, then it can be sorted in ©(rlogr) time.

Henceforth, S; will denote a subset of S and S[j] will denote the jth smallest
element in S. Similarly, K; will denote a subset of K and k; will denote the jth
smallest element in K. For simplicity, we will assume that the elements in S are
distinct.

Algorithm mselect (S, K)
1. if K is not empty then
2. if K = {k} then return select (S,k)

3. else

4. r— |K|

5. W — k(r/zw

6. select (S, w)

7. S ={xeS|x<Sw|}
8. S, ={xeS|x>Sw|}
9. Kl :{kl,kz,...,kw,l}
10. Kz = {k(r/2}+] - W, k(r/ﬂﬂq —W,... ,kr — W}
11. mselect (S1,K;)

12. mselect (S,,K5)

13. end if

14. end if

Since the recursion depth is [logr], the time complexity of Algorithm miselect is
O(nlogr).

As to the lower bound for multiselection, suppose that it is o(nlogr). Then, by
letting » = n, we would be able to sort # elements in o(n logn) time, contradicting the
Q(nlogn) lower bound for sorting on the decision model of computation. This lower
bound has been previously established in [3] in the context of heap operations. It
follows that the multiselection problem is Q(nlogr), and hence the algorithm given
above is optimal.

2. The parallel algorithm

In this section, we show that the multiselection problem can be solved in
O(nlogr) time on the EREW PRAM with n'~¢ processors, 0 < ¢ < 1, by slightly
modifying the adaptive parallel quicksort algorithm in [1,2]. The uses the parallel
selection algorithm in [4], which we will call SELECT. Algorithm SELECT runs in time
O(n¢) using N = n'~¢ processors on the EREW PRAM.

M.H. Alsuwaiyel | Parallel Computing 27 (2001) 861-865 863

Let N be the number of processors used in the multiselection algorithm, where

1 <N < n, write N = n'~¢. Let ¢ be an appropriately chosen small positive integer
greater than 1, say ¢ = min{r, 8}. The algorithm works as follows. Let p = [r/q].
For brevity, we will define ky = 0 and S[ky] = —ooc. First, Algorithm SELECT finds
and outputs the elements

S ={Slkpl[1<j<q—1}
of ranks in the set

K ={k,|1<j<q—1}.
The set S—§' is then partitioned into ¢ subsets: Sy, S5,,...,S,, where

Sj = {x € S|S[kj-1,] <x < Slk;]}
for 1<j<g—1, and

Sy = {x € S|x > Slkg-1,]}
Similarly, the set of ranks K—K' is partitioned into g subsets K, K>, ..., K,, where

Ky ={keK|(j—1)p <k <jp}
for 1<j<¢g—1,and

K, ={keK|(g—1p<k<r}
The algorithm is then, recursively called in parallel on the ¢ pairs (S}, K;), 1 <j<g,
where the number of processors used in each recursive call is proportional to the size
of the subset S}, i.e., N|S;|/|S].

Thus, the underlying principle is a generalization of the paradigm given in [4], in

which both the set of elements and the set of ranks are divided into two parts. Here,

they are divided into ¢ parts, and ¢ can be tuned for optimum performance. The
detailed is given below.

Algorithm MSELECT (S,K,N)
1. if |[K| < g then
2. for j — 1 to |K| do

3. SELECT (S,k;,N)

4. output S[k;]

5. end for

6. else

7. p—[IKl/q]

8. w «— ky

9. for j— 1tog—1do

10. SELECT (S,kj,,N)

11. output S[k;,]
12. Sj — {x € §|S[k(-1,] < x < Slky]}
13. Kj — {ku,])FJr] —W,ko,l)p+2 _W7~~-,kjp—l —W}
14. w— kj,

15. end for

864 M.H. Alsuwaiyel | Parallel Computing 27 (2001) 861-865

16. Sy — {x € S|x > Slkig-1),|}
17. Kq — {k(q,1>p+1 — W, k(q,l)erg —W,... ,kr - W}
18. for j — 1 to ¢ do in parallel

19. MSELECT (S}, K;,N|S;|/|S]|)
20. end for
21. end if

It is not hard to see that Algorithm MSELECT works correctly. We now analyze its
time complexity. Each call to Algorithm SELECT in lines 3 and 10 takes O(n¢) using
n'~¢ processors [4]. After each call SELECT (S, k;,, N),1 <j < ¢, in line 12, we extract
S; by marking those elements between (and not including) S[k(;_1),| and S[k,;], and
extracting them using the parallel prefix algorithm and compaction using all allo-
cated processors. That is, each processor works on n¢ elements and marks those
elements between S[k(;_1),] and S[k;]. This is followed by applying parallel prefix
and compaction. Hence, the time required to construct all S/’s is
O(g(n° +logn'~)) = O(gn°). Since K is sorted, K; is constructed by extracting those
elements greater than j, ; and less than j, in O(q) time. For each recursive call, the
number of processors is

NIS| _ nSi) IS
n n ne
Hence, the ratio of the number of elements to the number of processors is
S
1S;1/n¢
As shown in [4], each call to Algorithm SELECT takes O(n¢) time. It follows that the
overall running time of Algorithm MSELECT is governed by the recurrence:

t(ryn) = 1(r/q,n) + O(gn‘) + O(qlogn).

The solution to this recurrence is

t(r,n) = O(gn‘log,r) = O(nlogr),

and hence the cost of the algorithm is O(nlogr).

Acknowledgements

The author is grateful to King Fahd University of Petroleum and Minerals for
their continual support. Thanks to the anonymous reviewers for their valuable
comments that helped improve the quality of the presentation of this paper.

References

[1] S.G. Akl, Optimal parallel algorithms for computing convex hulls and for sorting, Computing 33
(1984) 1-11.

M.H. Alsuwaiyel | Parallel Computing 27 (2001) 861-865 865

[2] S.G. Akl, The Design and Analysis of Parallel Algorithms, Prentice Hall, Englewood Cliffs, NJ, 1989.

[3] M.L. Fredman, T.H. Spencer, Refined complexity analysis for heap operations, Journal of Computer
and System Sciences (1987) 269-284.

[4] H. Shen, Optimal parallel multiselection on EREW PRAM, Parallel Computing 23 (1997) 1987-1992.

