
December 5, 2001 9:27 WSPC/164-IJIG 00035

International Journal of Image and Graphics, Vol. 1, No. 4 (2001) 635–645
c© World Scientific Publishing Company

TWO ALGORITHMS FOR COMPUTING THE
EUCLIDEAN DISTANCE TRANSFORM

MARINA L. GAVRILOVA

Dept of Computer Science, University of Calgary,
Calgary, AB, Canada T2N1N4

marina@cpsc.ucalgary.ca

MUHAMMAD H. ALSUWAIYEL

Department of Information and Computer Science,
King Fahd University of Petroleum & Minerals,

Dhahran 31261, Saudi Arabia
suwaiyel@ccse.kfupm.edu.sa

Given an n × n binary image of white and black pixels, we present two optimal algo-
rithms for computing the distance transform and the nearest feature transform using the
Euclidean metric. The first algorithm is a fast sequential algorithm that runs in linear
time in the input size. The second is a parallel algorithm that runs in O(n2/p) time on
a linear array of p processors, p, 1 ≤ p ≤ n.

Keywords: Feature Transform; Distance Transform; Euclidean Distance; Parallel Algo-
rithms; Image Processing.

1. Introduction

Given an n × n binary image I of white and black pixels, the distance transform
of I is a map that assigns to each pixel the distance to the nearest black pixel,
referred to as a feature. The feature transform of I is a map that assigns to each
pixel the feature that is nearest to it. The distance transform was first introduced by
Rosenfeld and Pfaltz,1 and it has a wide range of applications in image processing,
robotics, pattern recognition and pattern matching.14 The distance metrics used to
compute the distance transform include the L1, L2 and L∞ metrics, with the L2

(Euclidean) metric being the most natural, and rotational invariant.
Several algorithms have been proposed for these metrics. One approach is to

grow clusters or neighborhoods around each feature p consisting of those pixels
whose nearest feature is p. This approach has been taken in Refs. 2 and 3 to obtain
sequential and parallel algorithms, respectively. Daniellson2 describes a sequential
nearest-neighbor transform algorithm that is nearly error-free. It runs in O(nm)
time, which is proportional to the size of the n × m image. Yamada3 provides
an exact parallel algorithm that takes O(max{n,m}) using O(nm) processors. A
similar approach that simulates circular waves originating at all features of the

635

December 5, 2001 9:27 WSPC/164-IJIG 00035

636 M. L. Gavrilova & M. H. Alsuwaiyel

image is described in Ref. 4. The algorithm is a sequential wavefront algorithm
that runs in O(nm) time. This approach, while as complex as the previous one, is
not suitable for parallelization.

An alternative approach, pioneered by Rosenford and Pfaltz,1 is based on the
idea of dimension reduction. The transform is first computed using the distance
function in one lower dimension and then the two-dimensional distance transfrom
is computed. Paglieroni5 extends this approach to a broader class of distance func-
tions, thus devising an O(nm log(nm)) time algorithm. Breu et al.6 compute the
distance transform by computing the Voronoi diagram in O(n) time. They achieve
this bound by refining the merge step in the classical divide-and-conquer algorithm
for the construction of the ordinary Voronoi diagram, so that the merge step takes
O(n) time. A modification of this algorithm that first computes the Voronoi di-
agram of segments and then obtains the feature transfrom was recently devised
in Ref. 6. However, the algorithms in Refs. 6–8, though linear, are computation-
ally expensive compared to those given for other metrics. An attempt to develop a
generalized algorithm that is applicable to a wide class of distance transforms has
been made in Ref. 9. Borgefors10 proposed a sequential algorithm that computes
the distance transfrom in the L1 metric by performing two scans: one is downward
scan from left to right and another is upward scan from right to left.

Some cost optimal parallel algorithms have been also developed. For instance,
Schwarzkof11 suggested an O(log n) time algorithm for the city block distance trans-
form on the mesh of trees with n2 processors. Lee and Horng12 proposed a chess-
board transform algorithm. The algorithm runs in O(log n) time using n2/ logn
processors on the EREW PRAM, in O(log n/ log logn) time using n2 log logn/ logn
processors on the CRCW PRAM, and in O(log n)time on an n2-processor hyper-
cube. Fujiwara et al.13 developed cost optimal algorithms for the weighted distance
transform. It runs in O(log n) time using n2/ logn processors on the EREW PRAM,
and in O(log logn) time using n2/ log logn processors on the CRCW PRAM. Cost
optimal algorithms for an n2-processor mesh and an n2-processor hypercube were
also proposed in Ref. 13.

In this paper, we propose two simple and optimal algorithms for computing the
distance transform and the nearest feature transform using the Euclidean metric.
We first present a sequential algorithm that processes the rows twice: in a top-down
scan and a bottom-up scan. The algorithm maintains a polygonal chain C contain-
ing all the necessary information to compute the nearest feature for each pixel of
the currently processed row. A marking characteristic of this algorithm updates the
polygonal chain dynamically as the image is swept row by row. The information
gathered while processing the previous row is utilized to compute the nearest fea-
tures for the next row. This results in a robust, easy-to-implement, optimum time
algorithm. Unlike other linear time algorithms, it stores only the minimum amount
of information required to compute the Euclidean distance transform.

The sequential algorithm can be parallelized easily by using the method of
dimension reduction. Although the mesh seems to be the most natural network

December 5, 2001 9:27 WSPC/164-IJIG 00035

Two Algorithms for Computing the Euclidean Distance Transform 637

architecture for parallelizing the algorithm, it results in a waste of resources. This
is due to the fact that O(n) processors will end up processing one row in linear
time, while one processor is indeed enough, as in the sequential algorithm. This
motivates the idea of parallelizing the algorithm on a linear array of processors. If
the processors are not powerful enough to store one row of the image each, systolic
computation can be used to pipeline the pixels and thus keep all processors busy
as much as possible. This results in an O(n) time algorithm with O(n2) total cost
for an n × n binary image. To the authors’ knowledge, the linear array was not
considered before as a suitable architecture for this problem.

For brevity, in our description of the algorithms, we will confine our attention to
computing the feature transform, and the distance transform will not be mentioned
explicitly.

2. The Sequential Algorithm

Let I be the input n × n image. It is assumed that I is an n × n array I of
zeroes and ones, representing white and black pixels, respectively. A pixel will be
represented by its coordinates, that is, (i, j) will denote the pixel in row i and
column j, where 1 ≤ i, j ≤ n. Given a pixel (i, j), f(i, j) will denote the feature
that is nearest to (i, j). For simplicity, we will assume that f(i, j) is unique, and
hence f is a function from the set of pixels to the set of features. Given a pixel (i, j),
δ(i, j) will denote the square of the Euclidean distance between (i, j) and f(i, j).

Consider the pixels in row i, where i is between 1 and n, and let (i′, j′) be the
nearest feature to pixel p = (i, j) among all features in rows 1, 2, . . . , i. Clearly, if
i′ > 1, and there is another feature (i′′, j′) with i′′ < i′, then (i′′, j′) cannot be
the nearest feature to pixel p. Let S be the set of features on or above row i that
are nearest to at least one pixel in row i. Let C denote the polygonal chain whose
vertices are the centers of those features in S. It follows that C is monotone with
respect to the horizontal line Li passing by the centers of pixels in row i.

This observation suggests the following approach for finding all nearest features.
We perform two sweeps on the image I: one from top to bottom and the other from
bottom to top. In the top-down sweep, we compute for each pixel (i, j) its nearest
feature ftd(i, j) among all features on or above row i and its corresponding δtd(i, j)
value. In the bottom-up sweep, we compute for each pixel (i, j) its nearest feature
fbu(i, j) among all features below row i and its corresponding δbu(i, j) value. Finally,
we set f(i, j) = ftd(i, j) if δtd(i, j) ≤ δbu(i, j), otherwise we set f(i, j) = fbu(i, j). In
each scan, the algorithm maintains a polygonal chain C, implemented as an array
that “slides” vertically through the image, top-down in the first scan, and bottom-
up in the second scan. This chain contains all the information needed to compute
the nearest feature for each pixel in row i above or below row i, depending on the
direction of each scan. Since the descriptions of the two sweeps are identical, we will
discuss only the top-down sweep. For this reason, we will drop the subscripts from
ftd and δtd, and simply use f and δ instead.

December 5, 2001 9:27 WSPC/164-IJIG 00035

638 M. L. Gavrilova & M. H. Alsuwaiyel

(2,1) (3,2) (3,3) (2,4) (4,5) (2,6) (3,7) (2,8)

Fig. 1. Example of the polygonal chain and its array representation when processing the fourth
row.

Now we give a detailed description of the algorithm for implementing the top-
down scan. C will be represented by an array of n 2-tuples, such that an entry C[j]
is either a feature or (0, 0). If it is a feature, then the center of that feature is a
vetex in the chain; otherwise, it is not. The intention is that just after the chain
corresponding to row i has been constructed, all closest features of pixels in row i

can be found in that chain.
Suppose that C[j] is nonempty. For fast access to its left and right nonempty

neighbors, we will make use of the two functions left(p) and right(p), which return,
respectively, the two features, if any, that are nearest to feature p to the left and right
of p in C. If C[j] is the leftmost nonempty entry in array C, then left(C[j]) = (0, 0).
Similarly, if C[j] is the rightmost nonempty entry in array C, then right(C[j]) =
(0, 0). Figure 1 provides an example of this representation, as well as the polygonal
chain after processing row 4 and before processing row 5.

Let p and q be two vertices of the chain. Then, B(p, q) will denote the perpen-
dicular bisector of the line segment pq. We will denote by V1 and Vn the two vertical
lines defined by the two equations x = 1 and x = n, respectively. Initially, all entries
in C are empty, that is, the chain is empty. When processing the topmost row, for
1 ≤ j ≤ n, C[j] is set to (1, j) if and only if pixel (1, j) is a feature. When processing
row i, C is updated by setting C[j] to (i, j) if and only if (i, j) is a feature. Next,
C is updated further by removing those features that cannot be the nearest to any
pixel in row i or below.

There are two tests corresponding to whether a vertex in the chain is extreme
(i.e., has no left or right neighbors) or not. Suppose that p = (i, j) is the leftmost
vertex in the chain, and q = right(p). If B(p, q) intersects with V1 above row i, then
p cannot be the nearest feature to any pixel in row i or below. Hence, p should be
removed from the chain. This process is applied iteratively until the perpendicular
bisector of the leftmost line segment in C does not intersect with V1 above row i.

December 5, 2001 9:27 WSPC/164-IJIG 00035

Two Algorithms for Computing the Euclidean Distance Transform 639

x� =1 x=n�

p�

q� r�

s�

Fig. 2. Example of the extreme features test.

The same procedure is applied starting from the rightmost feature in the chain. In
this case, the test is performed against the vertical line Vn. This is illustrated in
Fig. 2. In this figure, p, q, r and s will be removed from the chain.

The second test to be applied to the chain is concerned with internal vertices
of C (unless C consists of two vertices or fewer). Consider Fig. 3(a). In this figure,
B(p, q) and B(q, r) intersect above Li, the line passing by the centers of pixels in
row i. As will be shown later, feature q cannot be the nearest to any pixel in row i or
below. Therefore, q should be deleted from the chain. After it has been removed, its
right neighbor may also be removed, and so on. For instance, in Fig. 3(a), feature r
will also be deleted. Indeed, it may be the case that after the removal of r, feature
q, whose right neighbor has changed in the chain, fails the test, and hence should
be removed, as shown in Fig. 3(b). This too, may result in a sequence of deletions
in the backward direction, which we will refer to as backtracking.

After applying both tests, the nearest feature of every pixel in row i can be
found in the chain. To do the assignments of features to pixels in row i, the per-
pendicular bisectors of all line segments in the final chain are computed. These
bisectors partition the set of pixels in row i into groups of consecutive pixels, with
each group having the same nearest neighbor.

p�

q� r�

s�

row i

(a)

p�

q�
r�

s�

row i

(b)

Fig. 3. Example of removal of internal features.

December 5, 2001 9:27 WSPC/164-IJIG 00035

640 M. L. Gavrilova & M. H. Alsuwaiyel

p

q s

r

t

(a)

p

q s t

(b)

p

s t

(c)

Fig. 4. An instance in which the two scans fail to remove necessary features from the chain.

It is interesting to note that two scans of the chain, one forward and another
backward may not be enough, that is, a mechanism of either backtracking or looka-
head is needed for a proper maintenance of the chain. Figure 4 shows an instance in
which the algorithm that does not implement backtracking every time a feature gets
deleted from the chain fails to remove all unneeded features. In Fig. 4(a), the al-
gorithm is performing the forward scan, after which r is removed, as the bisectors
B(q, r) and B(r, s) intersect above the current row being processed [see Fig. 4(b)].
This is followed by removing a number of features located between features p and
q of the chain during the backward scan, which is shown in Fig. 4(c).

It is possible to first realize the nearest feature transform without calculating
Euclidean distances, then calculate the distance map based on the nearest feature
transform. Thus, the nearest-feature transform algorithm for the top down can be
stated more precisely in the following steps:

Step 1 (Initialization). For 1 ≤ j ≤ n, if I[1, j] = 0 then set C[j] = (0, 0), else
set C[j] = (1, j). Scan the first row from left to right and right to left to compute
f(1, j), left(j) and right(j), for all j, 1 ≤ j ≤ n. Set i = 2.

Step 2. Process row i.

Step 2.1 (Add features in row i to the polygonal chain). Scan C from left
to right. For j = 1, 2, . . . , n, if pixel (i, j) is black, then set C[j] = (i, j).

Step 2.2 (Perform test 1). If |C| ≤ 1 then go to Step 3. Let p and q be the two
leftmost features in C. While B(p, q) intersects V1 and q is not the rightmost feature
in C do the following: Remove p from C, set p = q and q = right(q). If |C| ≤ 1 then
go to Step 3. Let q and p be the rightmost features in C. While B(p, q) intersects
Vn and q is not the leftmost feature in C do the following: Remove p from C, set
p = q and q = left(q).

Step 2.3 (Perform test 2; advance, backtracking whenever it applies). If
|C| ≤ 2 then go to Step 3. Otherwise, let p, q and r be the three leftmost features
in C, and repeat Step 2.4 until all features in C have been processed.

December 5, 2001 9:27 WSPC/164-IJIG 00035

Two Algorithms for Computing the Euclidean Distance Transform 641

Step 2.4.

If B(p, q) and B(q, r) intersect below row i then
(Advance) Set p = q, q = r, r = right(r).

else

(Backtrack) Set q = p, p = left(p), right(q) = r, left(r) = q.

Step 3. At this point, C has been refined. Assign features to pixels.

Step 3.1. If |C| = 1 then let f(i, j) = p, for all j, 1 ≤ j ≤ n, where p is the feature
in C.

Step 3.2. If |C| ≥ 2 then let p and q be the two leftmost features in C, set k1 = 1,
and repeat Step 3.3 until q = (0, 0) (i.e., the rightmost feature in C has been
processed).

Step 3.3. Let x be the intersection point of B(p, q) and row i.
Set k2 = bxc.
For j = k1, k1 + 1, . . . , k2, set f(i, j) = p.
Set k1 = k2 + 1, p = q, q = right(q).

3. Correctness of the Algorithm

In this section, we prove the correctness of the algorithm. The proof is provided for
top-down sweep. In the case of bottom-up sweep, the proof is identical.

Lemma 1. All nearest features of pixels on row i can be found in the polygonal
chain.

Proof. As the image is swept from top to bottom, all features on or above row i

get inserted into the polygonal chain. Hence, we only need to show that if feature q
gets removed from the chain, then it cannot be the nearest feature to any pixel on
row i or below. Let q be a feature that has been deleted. We have three cases to
consider. If q was replaced by another feature p in the same column then any pixel
x on or below row i is closer to p than q. If q was removed because it failed test 1
(see Fig. 2), then since C is monotonic with respect to row i, the center of any pixel
x on row i or below belongs to the half plane defined by bisector B(p, q) containing
p. That is, x is closer to p than to q. Finally, if q gets removed because it fails test 2
[see Fig. 3(a)], then, as shown in the figure, the center of any pixel x on row i or
below belongs to either the half plane defined by bisector B(p, q) containig p or the
half plane defined by bisector B(q, r) containig r. That is, x is either closer to p or
r than to q.

Lemma 2. All pixels (i, j), 1 ≤ j ≤ n, in row i are assigned their correct nearest
feature f(i, j).

December 5, 2001 9:27 WSPC/164-IJIG 00035

642 M. L. Gavrilova & M. H. Alsuwaiyel

p�

q� j
�

q� j+1
q� k-2

q� k-1
�

q� k
�

Row i

Fig. 5. Example of bisectors intersecting to the left of p.

Proof. By Lemma 1, all nearest features for pixels in row i are found in the
polygonal chain. Now, we show that the algorithm assigns to each pixel in row i

its nearest feature in the chain. We show that, when processing row i, each pixel
located between the bisectors B(qj−1, qj) and B(qj , qj+1) (to the left of B(qj , qj+1)
if j = 1) has qj as its nearest feature. Suppose there is a pixel p on row i that lies
to the left of B(qj , qj+1), but its nearest feature is qk, for some k > j. That is,
feature qk lies to the right of feature qj in the polygonal chain. The proof is similar
if qk lies to the left of qj . Since pixel p is closer to qk than to qk−1, both p and qk
lie in the same half-plane defined by bisector B(qk−1, qk) and containing qk. Since
both qk and qk−1 are above row i and qk is to the right of p it follows that bisector
B(qk−1, qk) intersects row i to the left of pixel p. Consequently, feature qk−1 lies
above feature qk (see Fig. 5).

By construction, bisectors B(qk−1, qk) and B(qk−2, qk−1) intersect below row i,
for otherwise feature qk−1 should have been deleted from the polygonal chain. It
follows that qk−2 is above qk−1, and bisector B(qk−2, qk−1) intersects with row i to
the left of p. Applying the same reasoning iteratively to features qk−2, qk−3, . . . , qj ,
we conclude that bisector B(qj , qj+1) lies to the left of p. This contradicts the
assumption that p lies to the left of bisector B(qj , qj+1). It follows that f(p) 6= qk.
A similar argument shows that p lies to the right of bisector B(qj−1, qj) if j > 1.

As to the time complexity, each of the top-down and bottom-up sweeps costs
O(n2) time, as each row requires O(n) processing time. To see this, observe that
when processing any row, each feature is inserted into the chain exactly once and
deleted at most once. Updating the left and right pointers takes O(n) time for the
entire row. Finally, the nearest feature to each pixel is assigned exactly once.

Hence, we have the following theorem:

Theorem 1. The parallel algorithm described above finds the distance transform
and the nearest feature transform of a binary n× n image in O(n2) time, which is
linear in the input size.

December 5, 2001 9:27 WSPC/164-IJIG 00035

Two Algorithms for Computing the Euclidean Distance Transform 643

4. The Parallel Algorithm

The algorithm in the previous section, which we will call Algorithm 1, has the
following property that makes it very efficient on a sequential machine. The rows
are processed sequentially; row i is processed after the completion of processing
row i − 1. To parallelize the algorithm, the idea of dimension reduction is used.
Simply stated, all information needed to process each row is made available a priori.
For this purpose, let g(i, j) denote the nearest feature to pixel (i, j) in column j.
Clearly, g(i, j), 1 ≤ i, j ≤ n, can all be computed in O(n2) with two sweeps over
the image: top-down and bottom-up. Hence, the algorithm in the previous section
can be modified easily by adding a preprocessing step, which computes all g(i, j)’s,
and then building the chain for each row from scratch. We will call this algorithm
Algorithm 2. Although Algorithm 2 performs redundant computations, it can
be parallelized easily by processing all rows independently and in parallel. It does
not seem that the algorithm can be parallelized efficiently on the PRAM. For the
PRAM, more efficient algorithms exist that use the scan operator to sweep the
image vertically and horizontally without the need for extra data structures as
in Algorithm 2.

The most natural interconnection network architecture for parallelizing Algo-

rithm 2 is a mesh of n × n procesors. In this case, each row of processors work
independently on one row. The cost of implementing the algorithm on this architec-
ture is O(n3), which is too high in view of the fact that only one processor is needed
to process one row in O(n) time. Decreasing the size of the mesh to n × m pro-
cessors, where 1 ≤ m < n reduces the cost to O(mn2). Here, each of m processors
works on one row.

If we let m = 1, and the processors have enough memory to store one row of the
image, then Algorithm 2 can be implemented on a linear array of n processors.
We only need to describe the preprocessing step, computing the g(i, j)’s, as the
rest of the algorithm is exactly the same as in Algorithm 1, except that rows are
processed in parallel. Similarly to the sequential algorithm, the time required to
process a single row by a single processor is O(n). Thus, we will limit our discussion
to the top-down evaluation of the g(i, j)’s. Let P1, P2, . . . , Pn be the n processors.
For the preprocessing step, each pixel (i, j) in row i of the image travels starting from
Pi to Pn in a synchronized fashion. First, P1 computes g(1, j) for all j, 1 ≤ j ≤ n.
In the first step of movements, g(1, 1) moves into P2, and g(2, 1) is computed. In
the second step, g(1, 2) moves into P2, and g(2, 1) moves into P3, and the values of
g(2, 2) and g(3, 1) are computed simultaneously. This pattern of moving the values
of g(i, j)’s continues until g(n, n) is computed.

The above approach implies a simple systolic computation, in which the rows
are fed to the processors one element at a time (see Fig. 6). In this case, pixel (1, 1)
is first fed into P1. Next, both (1, 2) and (2, 1) are fed simultaneously into P1 and
P2, respectively. In the third time unit, (1, 3), (2, 2) and (3, 1) are fed into P1, P2

and P3, and so on.

December 5, 2001 9:27 WSPC/164-IJIG 00035

644 M. L. Gavrilova & M. H. Alsuwaiyel

P
�

P
�

P

P

(,) (,) (,) (,)

(,) (,) (,)

(,) (,)

(,)

Fig. 6. Example of systolic computation in the preprocessing step.

Clearly, the time required for the preprocessing step using pipelining is O(n).
This results in an optimal O(n) time algorithm with total cost in the order of O(n2).

In this paper, we consider in detail only the two extreme cases, one with one
processor and another with n processors. Since any parallel algorithm that runs on
a linear array with n processors can easily be modified to run using p processors, the
presented algorithm will run in O(n2/p) time for any p, 1 ≤ p ≤ n. The algorithm
cost will be optimal O(n2).

Hence, we have the following theorem:

Theorem 2. The parallel algorithm described above finds the distance transform
and the nearest feature transform of a binary n× n image in O(n2/p) time and an
optimal O(n2) cost, on a linear array of p processors, p, 1 ≤ p ≤ n.

Note that the parallel algorithm is suitable for coarse-grained processors, which
means it can be run in a parallel environment in which a number of computers are
connected together. This means that the size of the input can be arbitrary. Finally,
note that the algorithm can be extended to higher dimension, with the apparent
increase of the cost.

5. Conclusion

We have presented two algorithms for the computation of the nearest feature trans-
form and the distance transform; one is sequential and the other is parallel. The
sequential algorithm is a fast linear time algorimth that makes use of the line sweep
method to avoid repetitive computations. The parallel algorithm is a time optimal
algorithm that uses an array of p processors, p, 1 ≤ p ≤ n. In the case when these
processors are not powerful enough to hold data of size O(n), they can be used to
perform a systolic computation on the input image. Both algorithms are easy to
implement, and with minor modifications will work for other metrics.

References

1. A. Rosenfeld and J. L. Pfalz, “Sequential operations in digital picture processing,”
J. ACM 13, 471 (1966).

2. P. Danielsson, “Euclidean distance mapping,” in Computer Graphics and Image Pro-
cessing 14, 227 (1980).

December 5, 2001 9:27 WSPC/164-IJIG 00035

Two Algorithms for Computing the Euclidean Distance Transform 645

3. H. Yamada, “Complete Euclidean distance transformation by parallel operation,” in
Proc. 7th International Conference on Patter Recognition, 1984, pp. 69–71.

4. I. Ragnemalm, “Neighborhoods for distance transformation using ordered propoga-
tion,” Comput. Vision, Graphics and Image Processing 56, 399 (1992).

5. D. W. Paglieroni, “Distance transforms: Properties and machine vision applications,”
CVGIP: Graphical Models and Image Processing, 54, 56 (1992).

6. H. Breu, J. Gil, D. Kirkpatrick and M. Werman, “Linear time Euclidean distance
transform algorithms,” in IEEE Trans. Pattern Analysis and Machine Intelligence
17(5), 529 (1995).

7. W. Guan and S. Ma, “A line-processing approach to compute Voronoi diagrams and
the Euclidean distance transform,” in IEEE Trans. Pattern Analysis and Machine
Intelligence 20, 7 (1998) pp. 757–761.

8. L. Chen and H. Y. H. Chuang, “A fast algorithm for Euclidean distance maps of a
2-D binary image,” Information Processing Lett. 5(1), 25 (1994).

9. T. Hirata, “A unified linear-time algorithm for computing distance maps,” in Infor-
mation Processing Lett. 58, 129 (1996).

10. G. Borgefors, “Distance transformations in digital images,” in Comput. Vision, Graph-
ics and Image Processing 34, 344 (1986).

11. O. Schwarzkopf, “Parallel computation of distance transform,” Algorithmica 6, 685
(1991).

12. Y.-H. Lee and S.-J. Horng, “Fast parallel chessboard distance transform algorithms,”
in Proc. 1996 International Conference on Parallel and Distributed Systems, 1992,
pp. 488–493.

13. A. Fujiwara, M. Inoue, T. Masuzawa and H. Fujiwara, “A simple parallel algorithm
for the medial axis transform of binary images,” in Proc. IEEE Second International
Conference on Algorithms and Architecture for Parallel Processing, 1996, pp. 1–8.

14. D. W. Paglieroni, “Distance transforms: Properties and machine vision applications,”
CVGIP: Graphical Models and Image Processing, 54, 56 (1992).

Marina L. Gavrilova is an Assistant Professor in the Department of Computer
Science, University of Calgary, Alberta, Canada. She received her Diploma with
Honors from the Moscow Lomonosov State University, Russia in 1993 and her
Doctoral degree from the University of Calgary, Canada in 1999. She was a recipient
of PIMs Postdoctoral Fellowship Award in 1999–2000. Dr. Gavrilova’s main research
interests lie in the area of computer graphics, geometric algorithms and parallel
processing. She is a member of the Institute of Electrical and Electronic Engineering
(IEEE) and the IEEE Computer Society.

Muhammad H. Alsuwaiyel is an Associate Professor in the Department of In-
formation and Computer Science, King Fahd University of Petroleum & Minerals,
Saudi Arabia. His main interests include algorithms, image processing and parallel
computing. He is an author of the book “Algorithms Design Techniques and Anal-
ysis,” published in 1999 by World Scientific Publishing Co. Dr. Alsuwaiyel is also
a member of the Institute of Electrical and Electronic Engineering (IEEE).

Copyright of International Journal of Image & Graphics is the property of World Scientific Publishing

Company and its content may not be copied or emailed to multiple sites or posted to a listserv without the

copyright holder's express written permission. However, users may print, download, or email articles for

individual use.

