
The Journal of Supercomputing, 25, 177–185, 2003

2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

Computing the Euclidean Distance Transform
on a Linear Array of Processors

MARINA L. GAVRILOVA marina@cpsc.ucalgary.ca

Department of Computer Science, University of Calgary, Calgary, Canada

MUHAMMAD H. ALSUWAIYEL suwaiyel@ccse.kfupm.edu.sa

Department of Information and Computer Science, KFUPM, Dhahran, Saudi Arabia

Abstract. Given an n6n binary image of white and black pixels, we present an optimal parallel

algorithm for computing the distance transform and the nearest feature transform using the Euclidean

metric. The algorithm employs the systolic computation to achieve OðnÞ running time on a linear array of
n processors.

Keywords: feature transform, distance transform, Euclidean distance, parallel algorithm, linear array of

processors, image processing

1. Introduction

Given an n6n binary imagei of white and black pixels, the distance transform ofi
is a map that assigns to each pixel the distance to the nearest black pixel, referred to
as feature. The feature transform of i is a map that assigns to each pixel the feature
that is nearest to it. The distance transform algorithm was pioneered by Rosenfeld
and Pfaltz [9], and it has a wide range of applications in image processing, robotics,
pattern recognition and pattern matching. The distance metrics used to compute the
distance transform include the L1;L2 and L? metrics, with the L2 (Euclidean) metric
being the most natural, and rotational invariant.
Several algorithms have been proposed for these metrics. One approach is to grow

clusters or neighborhoods around each feature p consisting of those pixels whose
nearest feature is p. This approach has been taken in Danielsson [3] and Yamada [11]
to obtain sequential and parallel algorithms, respectively. Daniellson [3] describes a
sequential nearest-neighbor transform algorithm that is nearly error-free. It runs in
OðnmÞ time, which is proportional to the size of the n6m image. Yamada [11]
provides an exact parallel algorithm that takes Oðmaxfn;mgÞ using OðnmÞ
processors. A similar approach that simulates circular waves originating at all
features of the image is described in Ragnemalm [8]. The algorithm is a sequential
wavefront algorithm that runs in OðnmÞ time. This approach, while as complex as
the previous one, is not suitable for parallelization.
An alternative approach, pioneered by Rosenford and Pfaltz [9], is based on the

idea of dimension reduction. The transform is first computed using the distance
function in one lower dimension and then the 2D distance transform is computed.

Breu et al. [2] compute the distance transform by computing the Voronoi diagram in
OðnÞ time. A modification of this algorithm that first computes the Voronoi diagram
of segments and then obtains the feature transform was recently devised in Guan and
Ma [5]. An attempt to develop a generalized algorithm that is applicable to a wide
class of distance transforms has been made in Hirata [6]. Borgefors [1] proposed a
sequential algorithm that computes the distance transform in the L1 metric by
performing two scans: one is downward scan from left to right and another is
upward scan from right to left.
Some cost optimal parallel algorithms have been also developed. For instance,

Schwarzkof [10] suggested an Oðlog nÞ time algorithm for the city block distance
transform on the mesh of trees with n2 processors. Lee and Horng [7] proposed a
chessboard transform algorithm. The algorithm runs in Oðlog nÞ time using n2= log n
processors on the EREW PRAM, in Oðlog n= log log nÞ time using n2 log log n= log n
processors on the CRCW PRAM, and in Oðlog nÞ time on an n2-processor
hypercube. Fujiwara et al. [4] developed cost optimal algorithms for the weighted
distance transform. It runs in Oðlog nÞ time using n2= log n processors on the EREW
PRAM, and in Oðlog log nÞ time using n2= log log n processors on the CRCW PRAM.
Cost optimal algorithms for an n2-processor mesh and an n2-processor hypercube
were also proposed in Fujiwara et al. [4].
In this paper, we propose a simple and optimal parallel algorithm for computing

the distance transform and the nearest feature transform using the Euclidean metric.
The algorithm builds the polygonal chains Ci for each row i. The polygonal chain
contains all the necessary information to compute the nearest feature for each pixel
of row i. The method of dimension reduction is used to devise a time optimal
parallel algorithm on a linear array of processors. If the processors are not powerful
enough to store one row of the image each, systolic computation can be used to
pipeline the pixels and thus keep all processors busy as much as possible. This
results in an OðnÞ time algorithm with linear total cost. To the authors’ knowledge,
the linear array was not considered before as a suitable architecture for this
problem.

2. The approach

This section describes the basis algorithm notions: building the polygonal chain and
performing the tests that allow elimination of black pixels that cannot be feature. Let
i be the input n6n image. It is assumed thati is an n6n array I of zeroes and ones,
representing white and black pixels, respectively. A pixel will be represented by its
coordinates, that is, ði; jÞ will denote the pixel in row i and column j, where
1 � i; j � n. Given a pixel ði; jÞ, f ði; jÞ will denote the feature that is nearest to ði; jÞ.
For simplicity, we will assume that f ði; jÞ is unique, and hence f is a function from
the set of pixels to the set of features. Given a pixel ði; jÞ, dði; jÞ will denote the
square of the Euclidean distance between ði; jÞ and f ði; jÞ.

178 GAVRILOVA AND ALSUWAIYEL

2.1. The polygonal chain

Consider the pixels in row i, where i is between 1 and n, and let ði0; j0Þ be the nearest
feature to pixel p ¼ ði; jÞ among all features in rows 1; 2; . . . ; i. Clearly, if i0 > 1, and
there is another feature ði00; j0Þ with i00 < i0, then ði00; j0Þ cannot be the nearest feature
to pixel p. Let S be the set of features on or above row i that are nearest to at least
one pixel in row i. Let Ci denote the polygonal chain for row i, whose vertices are the
centers of those features in S. It follows that Ci is monotone with respect to the
horizontal line Li passing by the centers of pixels in row i.
This observation suggests the following approach for finding all nearest features.

For each row, we build two polygonal chains Ci; top and Ci; bottom. To build the
polygonal chain Ci; top, we compute for each pixel ði; jÞ its nearest feature ftdði; jÞ
among all features on or above row i and its corresponding dtdði; jÞ value. To build
the polygonal chain Ci; bottom, we compute for each pixel ði; jÞ its nearest feature
fbuði; jÞ among all features below row i and its corresponding dbuði; jÞ value. Finally,
we set f ði; jÞ ¼ ftdði; jÞ if dtdði; jÞ � dbuði; jÞ, otherwise we set f ði; jÞ ¼ fbuði; jÞ.
This process can be viewed as performing two scans on the image i: one from top

to bottom and the other from bottom to top. The algorithm computes polygonal
chains Ci for each row i. Each chain contains all the information needed to compute
the nearest feature for each pixel in row i above or below row i, depending on the
direction of each scan. Since the construction of the polygonal chain for all the pixels
on and above row i is identical to the construction of the polygonal chain for pixels
on and below row i, we will discuss only the former. For this reason, we will drop the
subscripts from ftd and dtd , and simply use f and d instead. We will also drop the
subscripts top and bottom and use notation Ci to refer to the polygonal chain.

2.2. Building the chain

Now we give a detailed description of the algorithm for building the polygonal chain
for pixels on and above the given row. Ci will be represented by an array of n 2-
tuples, such that an entry Ci½ j	 is either a feature or ð0; 0Þ. If it is a feature, then the
center of that feature is a vertex in the chain; otherwise, it is not. Suppose that Ci½ j	
is nonempty. For fast access to its left and right nonempty neighbors, we will make
use of the two functions leftðpÞ and rightðpÞ, which return, respectively, the two
features, if any, that are nearest to feature p to the left and right of p in Ci. If Ci½ j	 is
the leftmost nonempty entry in array Ci, then left ðCi½ j	Þ ¼ ð0; 0Þ. Similarly, if Ci½ j	
is the rightmost nonempty entry in array Ci, then right ðCi½ j	Þ ¼ ð0; 0Þ. Figure 1
provides an example of this representation, as well as the polygonal chain after
processing row 4 and before processing row 5.
Let p and q be two vertices of the chain. Then, Bðp; qÞ will denote the

perpendicular bisector of the line segment �pqpq. We will denote by V1 and Vn the two
vertical lines defined by the two equations x ¼ 1 and x ¼ n, respectively. Initially, all
entries in Ci are empty, that is, the chain is empty. When preprocessing each row, for
1 � j � n, Ci½ j	 is set to ð1; jÞ if and only if pixel ð1; jÞ is a feature. When processing
each row, Ci is updated by setting Ci½ j	 to ði; jÞ if and only if ði; jÞ is a feature. Next,

COMPUTING THE EUCLIDEAN DISTANCE TRANSFORM 179

Ci is updated further by removing those features that cannot be the nearest to any
pixel in row i.

2.3. The extreme feature test
There is a test corresponding to whether a vertex in the chain is extreme (i.e., has no
left or right neighbors) or not. Suppose that p ¼ ði; jÞ is the leftmost vertex in the
chain, and q ¼ rightðpÞ. If Bðp; qÞ intersects with V1 above row i, then p cannot be
the nearest feature to any pixel in row i. Hence, p should be removed from the chain.
This process is applied iteratively until the perpendicular bisector of the leftmost line
segment in Ci does not intersect with V1 above row i. The same procedure is applied
starting from the rightmost feature in the chain. In this case, the test is performed
against the vertical line Vn. This is illustrated in Figure 2. In this figure, p, q, r and s
will be removed from the chain.

2.4. The internal feature test

The second test to be applied to the chain is concerned with internal vertices of Ci
(unless Ci consists of two vertices or less). Consider Figure 3(a). In this figure, Bðp; qÞ

Figure 1. Example of the polygonal chain and its array representation when processing the fourth row.

Figure 2. Example of the extreme features test.

180 GAVRILOVA AND ALSUWAIYEL

and Bðq; rÞ intersect above Li, the line passing by the centers of pixels in row i. As
will be shown later, feature q cannot be the nearest to any pixel in row i or below.
Therefore, q should be deleted from the chain. After it has been removed, its right
neighbor may also be removed, and so on. For instance, in Figure 3(a), feature r will
also be deleted. Indeed, it may be the case that after the removal of r, feature q,
whose right neighbor has changed in the chain, fails the test, and hence should be
removed, as shown in Figure 3(b). This too, may result in a sequence of deletions in
the backward direction, which we will refer to as backtracking.
After applying both tests the nearest feature of every pixel in row i can be found in

the chain. To do the assignments of features to pixels in row i, the perpendicular
bisectors of all line segments in the final chain are computed. These bisectors
partition the set of pixels in row i into groups of consecutive pixels, with each group
having the same nearest neighbor.
Similar technique is applied to compute the nearest feature for each pixel in row i

below row i. Then one of the two nearest-features with the smallest distance from a
pixel is chosen as the resulting feature.

3. The algorithm

In devising the parallel algorithm, the idea of dimension reduction is used. Note that
each row can be processed independently of others, and all nearest-features can be
computed in Oðn2Þ with two sweeps over the image: top-down and bottom-up. Rows
can be processed independently and in parallel. The most natural interconnection
network architecture for parallelizing the algorithm is a mesh of n6n processors. In
this case, each row of processors works independently on one row. The cost of
implementing the algorithm on this architecture is Oðn3Þ, which is too high in view of
the fact that only one processor is needed to process one row in OðnÞ time.
Decreasing the size of the mesh to n6m processors, where 1 � m < n reduces the
cost to Oðmn2Þ. Here each of m processors work on one row.
If we let m ¼ 1, and the processors have enough memory to store one row of the

image, then the algorithm can be implemented on a linear array of n processors. Let
P1;P2; . . . ;Pn be the n processors. For the preprocessing step, each pixel ði; jÞ in row
i of the image travels starting from Pi to Pn in a synchronized fashion. This approach

Figure 3. Example of removal of internal features.

COMPUTING THE EUCLIDEAN DISTANCE TRANSFORM 181

implies a simple systolic computation, in which the rows are fed to the processors
one element at a time (see Figure 4). In this case, pixel ð1; 1Þ is first fed into P1. Next,
both ð1; 2Þ and ð2; 1Þ are fed simultaneously into P1 and P2, respectively. In the third
time unit, ð1; 3Þ, ð2; 2Þ and ð3; 1Þ are fed into P1, P2 and P3, and so on.
Next, each of the processors P1;P2; . . . ;Pn builds two polygonal chains Ci; top and

Ci; bottom for row i, applying the series of extreme and internal feature tests. Each
chain corresponds to the top-down and bottom-up scan of the image, and contains
information on the feature on and above or on and below the given row. Finally, for
each pixel in each row, the nearest between the two features computed on the
previous step is selected. Here, once again, each processor works on its own row.
More formally, the algorithm is given as follow:

Step 1 (Preprocessing) Apply systolic computation to feed pixels ði; jÞ to processors
P1;P2; . . . ;Pn.

Step 2 (Processing row i by processor Pi)
Step 2.1 Add all nearest black pixels in and above row i (or in and below row i
to the polygonal chain Ci, sweeping the row from left to right.

Step 2.2 (Perform extreme feature test)
If jCji � 1 then go to Step 3. Let p and q be the two leftmost features in Ci.
While Bðp; qÞ intersects V1 and q is not the rightmost feature in Ci,
remove p from Ci, set p ¼ q and q ¼ rightðqÞ.

If jCji � 1 then go to Step 3. Perform the same test for the rightmost
feature.

Step 2.3 (Perform internal feature test)
If jCji � 2 then go to Step 3. Otherwise, let p, q and r be the three leftmost
features in Ci, and repeat the following until all features in Ci have been
processed:

If Bðp; qÞ and Bðq; rÞ intersect below row i then
(Advance) Set p ¼ q; q ¼ r; r ¼ rightðrÞ.

else
(Backtrack) Set q ¼ p; p ¼ leftðpÞ; rightðqÞ ¼ r; leftðrÞ ¼ q.

Step 3 (Assign features to pixels) For each pixel ði; jÞ in row i, the nearest between
the two features from the two chains Ci (above and below row i) computed
during the Step 2 is selected. The processing for each row is done by Pn.

Figure 4. Example of systolic computation in the preprocessing step.

182 GAVRILOVA AND ALSUWAIYEL

The time required for the preprocessing step using pipelining is OðnÞ. Each row
requires OðnÞ processing time on each processor. To see this, observe that when
processing any row, each feature is inserted into the chain exactly once and deleted at
most once. Updating the left and right pointers takes OðnÞ time for the entire row.
Finally, the nearest between the two feature computed for each pixel in a row is
selected once, thus the time required for the third algorithms step is OðnÞ. This
results in an optimal OðnÞ time algorithm.
Hence, we have the following theorem:

Theorem 1 The algorithm described above finds the distance transform and the
nearest feature transform of a binary n6n image in OðnÞ time, which is linear in the
input size, on a linear array of n processors.

4. The algorithm correctness

In this section, we prove the correctness of the algorithm. The proof is provided for
building the polygonal chain containing all nearest features. The prove is given for
building Ci; top polygonal chain. The proof for Ci; bottom polygonal chain is identical.

Lemma 1 All nearest features of pixels on row i can be found in the polygonal chain.

Proof: All features on or above row i get inserted into the polygonal chain. Hence,
we only need to show that if feature q gets removed from the chain, then it cannot be
the nearest feature to any pixel on row i or below. Let q be a feature that has been
deleted. We have three cases to consider. If q was replaced by another feature p in the
same column then any pixel x on or below row i is closer to p than q. If q was
removed because it failed test 1 (see Figure 2), then since C is monotonic with respect
to row i, the center of any pixel x on row i or below belongs to the half plane defined
by bisector Bðp; qÞ containing p. That is, x is closer to p than to q. Finally, if q gets
removed because it fails test 2 (see Figure 3(a)), then, as shown in the figure, the
center of any pixel x on row i or below belongs to either the half plane defined by
bisector Bðp; qÞ containing p or the half plane defined by bisector Bðq; rÞ containing
r. That is, x is either closer to p or r than to q. h

Lemma 2 All pixels ði; jÞ; 1 � j � n, in row i are assigned their correct nearest
feature f ði; jÞ.

Proof: By Lemma 1, all nearest features for pixels in row i are found in the
polygonal chain. Now, we show that the algorithm assigns to each pixel in row i its
nearest feature in the chain. We show that, when processing row i, each pixel located
between the bisectors Bðqj�1; qjÞ and Bðqj; qjþ1Þ (to the left of Bðqj; qjþ1Þ if j ¼ 1) has
qj as its nearest feature. Suppose there is a pixel p on row i that lies to the left of
Bðqj; qjþ1Þ, but its nearest feature is qk, for some k > j. That is, feature qk lies to the
right of feature qj in the polygonal chain. The proof is similar if qk lies to the left of

COMPUTING THE EUCLIDEAN DISTANCE TRANSFORM 183

qj. Since pixel p is closer to qk than to qk�1, both p and qk lie in the same half-plane
defined by bisector Bðqk�1; qkÞ and containing qk. Since both qk and qk�1 are above
row i and qk is to the right of p it follows that bisector Bðqk�1; qkÞ intersects row i to
the left of pixel p. Consequently, feature qk�1 lies above feature qk (see Figure 5).
By construction, bisectors Bðqk�1; qkÞ and Bðqk�2; qk�1Þ intersect below row i, for

otherwise feature qk�1 should have been deleted from the polygonal chain. It follows
that qk�2 is above qk�1, and bisector Bðqk�2; qk�1Þ intersects with row i to the left of
p. Applying the same reasoning iteratively to features qk�2; qk�3; . . . ; qj, we conclude
that bisector Bðqj; qjþ1Þ lies to the left of p. This contradicts the assumption that p lies
to the left of bisector Bðqj; qjþ1Þ. It follows that f ðpÞ 6¼ qk. A similar argument shows
that p lies to the right of bisector Bðqj�1; qjÞ if j > 1.

5. Conclusion

We have presented the parallel algorithm for the computation of the nearest feature
transform and the distance transform. The algorithm is a time optimal algorithm
that uses an array of n processors. In the case when these processors are not powerful
enough to hold data of size OðnÞ, they can be used to perform a systolic computation
on the input image. The proof of the correctness is provided. The algorithm is easy to
implement, and with minor modifications will work for other metrics.

References

1. G. Borgefors. Distance transformations in digital images. Computer Vision, Graphics and Image

Processing, 34:344–371, 1986.

2. H. Breu, J. Gil, D. Kirkpatrick, and M. Werman. Linear time Euclidean distance transform

algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17 5:529–533, 1995.

3. P. Danielsson. Euclidean distance mapping. Computer Graphics and Image Processing, 14:227–248,

1980.

4. A. Fujiwara, M. Inoue, T. Masuzawa, and H. Fujiwara. A simple parallel algorithm for the medial

axis transform of binary images. In Proceedings of the IEEE 2nd International Conference on

Algorithms and Architecture for Parallel Processing, 1–8, 1996.

5. W. Guan and S. Ma. A line-processing approach to compute Voronoi diagrams and the Euclidean

distance transform. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(7):757–761,

1998.

Figure 5. Example of bisectors intersecting to the left of p.

184 GAVRILOVA AND ALSUWAIYEL

6. T. Hirata. A unified linear-time algorithm for computing distance maps. Information Processing

Letters, 58:129–133,1996.

7. Y.-H. Lee and S.-J. Horng. Fast parallel chessboard distance transform algorithms. In Proceedings of

the 1996 International Conference Parallel and Distribution Systems, 488–493, 1992.

8. I. Ragnemalm. Neighborhoods for distance transformation using ordered propogation. Computer

Vision, Graphics and Image Processing, 56:399–409, 1992.

9. A. Rosenfeld and J. L. Pfalz. Sequential operations in digital picture processing. Journal of the ACM,

13:471–494, 1966.

10. O. Schwarzkopf. Parallel computation of distance transform. Algorithmica, 6:685–697, 1991.

11. H. Yamada. Complete Euclidean distance transformation by parallel operation. Proceedings of the 7th

International Conference on Pattern Recognition, 69–71, 1984.

COMPUTING THE EUCLIDEAN DISTANCE TRANSFORM 185

