
Discrete Math. Appl., Vol. 16, No. 2, pp. 175–180 (2006)
© VSP 2006.

A random algorithm for multiselection

M. H. ALSUWAIYEL

Abstract — Given a set S of n elements drawn from a linearly ordered set and a set K D
fk1; k2; : : : ; krg of positive integers between 1 and n, the multiselection problem is to select the
ki th smallest element for all values of i; 1 � i � r . We present an efficient randomised algorithm to
solve this problem in time O.n log r/ with probability at least 1�cn�1, where c is a positive constant.

1. INTRODUCTION

Let S be a set of n elements drawn from a linearly ordered set, and let K D fk1; k2; : : : ; krg
be a sorted list of positive integers between 1 and n, that is, a set of ranks. The multiselection
problem is to select the ki th smallest element for all values of i , 1 � i � r . If r D 1, then
we have the classical selection problem. On the other hand, if r D n, then the problem is
tantamount to the problem of sorting.

It appears that finding efficient algorithms for the multiselection problem did not re-
ceive as much attention in the sequential environment as in the parallel invironment. The
classical and simple sequential algorithm in [6] remains the only one and is a base on
which several parallel algorithms were developed. It seems that the first parallelisation
of the multiselection problem was that of Shen [8], in which he presented an optimal par-
allel algorithm that runs in time O.n" log r/ on the EREW PRAM with n1�" processors,
0 < " < 1. In the special case where " D log.log n log� n/= log n, his algorithm runs in
time O.log n log� n log r/. He presented a general framework, which is basically a paral-
lelisation of an optimal sequential algorithm that first finds the element x with rank kr=2,
partitions S into two groups: the elements smaller than x and the elements greater than
x, which induces two subproblems that are solved by applying the algorithm recursively.
Another algorithm with the same running time and number of processors can be found
in [2]. This algorithm is a result of a simple modification of the parallel QUICKSORT al-
gorithm in [1]. In [3], an optimally efficient parallel algorithm was presented. It runs in time
O ...n=p/ C ts.p//.lg r C lg.n=p/// on the EREW PRAM with p processors, r � p < n,
where ts.p/ is the time needed to sort p elements using p processors. This algorithm implies
an efficient parallelisation of quicksort with multiple number of pivots on an EREW PRAM
with p processors. More on the work of Shen on parallel algorithms for the multiselection
problem on interconnection networks (e.g., the hypercube, the mesh and multidimensional
meshes) can be found in [9, 10, 11, 12].

Originally published in Diskretnaya Matematika (2006) 18, No. 2 (in Russian).
Received May 13, 2004.



176 M. H. Alsuwaiyel

In this research, we attempt to switch to the sequential environment and exhibit not only
an efficient, but also a fast and practical randomised algorithm that is simple to describe.
Moreover, the idea behind it is intuitive and the analysis of the algorithm is fairly simple.

2. DETERMINISTIC MULTISELECTION

The algorithm in [6], which we will refer to as MULTISELECT, is straightforward. Find
the dk=2eth smallest element a, partition the input set S into two sets S1 and S2 of ele-
ments, respectively, smaller and larger than a and make two recursive calls: one with S1

and fk1; k2; : : : ; dk=2e � 1g and another with S2 and fdk=2e C 1; dk=2e C 2; : : : ; krg.

Algorithm MULTISELECT .S; K/.

(1) If jKj > 0 do Step 2 to 6.

(2) Set k D kdr=2e. Use SELECT to find s, the kth smallest element in S . Output s.

(3) By comparing s with the elements in S , determine the two sets S1 and S2 of elements
less of equal to s and greater than s, respectively.

(4) Let K1 D fk1; k2; : : : ; kdr=2e�1g, K2 D fkdr=2eC1; kdr=2eC2; : : : ; krg.

(5) Recursively call MULTISELECT on .S1; K1/.

(6) Recursively call MULTISELECT on .S2; K2/.

In Step 2, SELECT is a deterministic ‚.n/ time algorithm for selection. Obviously,
the algorithm solves the multiselection problem in time ‚.n log r/, as the recursion depth
is log r and the work done in each level of the recursion tree is ‚.n/. As to the lower
bound for multiselection, suppose that it is o.n log r/. Then, by letting r D n, we would
be able to sort n elements in o.n log n/ time, contradicting the �.n log n/ lower bound for
comparison-based sorting on the decision tree model of computation. This lower bound has
been previously established in [6]. It follows that the multiselection problem is �.n log r/,
and hence the algorithm given above is optimal.

It appears that the deterministic multiselection algorithm above, as well as any other
deterministic algorithm, are typical of the well-known classical selection algorithm (see
[4]). Algorithm MULTISELECT is impractical, especially for small and moderate values
of n. This impracticality is inherited, and indeed compounded, by the classical sequential
multiselection algorithm. To see this, consider the case K D f1; 2; 3g. The algorithm
first calls Algorithm SELECT with the input set S to find the 2nd smallest element. In
a subsequent call to Algorithm SELECT, n � 2 elements will be reprocessed to find the
3rd smallest element. In general, it can be shown by referring to the recursion tree that if
K D f1; 2; : : : ; rg, then the algorithm will call Algorithm SELECT O.log log r/ times with
at least n � r � 1 elements.

Hoare’s FIND algorithm[7], which is also referred to in the literature as Algorithm
QUICKSELECT, is a very popular deterministic selection algorithm due to its simplicity
and good average performance in spite of its O.n2/ worst case behaviour. It seems that this
algorithm is the best candidate to be used in conjunction with Algorithm MULTISELECT.



A random algorithm for multiselection 177

An obvious alternative for improving the efficiency of the algorithm is to resort to
randomisation. A straighforward approach is to use a randomised version of Algorithm
QUICKSELECT as a replacement of Algorithm SELECT in Step 2. However, the crucial issue
of ranks being clustered in one or more regions, especially at the two extremes, as exempli-
fied above, remains to be resolved. If, for instance, the ranks are clustered at the beginning,
e.g., K D f1; 2; : : : ; rg, it would be desirable to get rid of as many unwanted large elements
as possible.

3. THE ALGORITHM

In this section, we propose a simple and efficient algorithm which is tailor-made for the
problem of multiselection. Randomised QUICKSORT is a very powerful algorithm, and
as it turns out, a slight modification of the algorithm solves the multiselection problem
efficiently. The idea is so simple and straightforward. Call the elements sought by the
multiselection problem targets. For example if j 2 K , then the j th smallest element in S

is a target. Pick an element s 2 S uniformly at random, and partition the elements in S

around s into small and large elements. If both small and large elements contain targets,
let QUICKSORT continue normally. Otherwise, if only the small (large) elements contain
targets, then discard the large (small) elements and recurse on the small (large) elements
only. So, the algorithm is a hybrid of both QUICKSORT and QUICKSELECT algorithms.
Note that by QUICKSORT we mean the randomised version of the algorithm.

In the algorithm description, we will use the following (invariably standard) notation to
repeatedly partition S into smaller subsets. Let y 2 S with rank ky 2 K . Partition S into
two subsets S� D fx 2 S j x � yg and S> D fx 2 S j x > yg. Since ky denotes the rank
of y, this partitioning of S induces the bipartitioning of K

K� D fk 2 K j k � kyg; K> D fk � ky j k 2 K; k > kyg:
The two pairs .S�; K�/ and .S>; K>/ will be called selection pairs. A selection pair .S; K/,
as well as the sets S and K , will be called active if jKj > 0; otherwise they will be called
inactive. A more formal description of the algorithm is given below.

Algorithm QUICK-MULTISELECT .S; K/.

(1) If jKj > 0 do Step 2 to 6.

(2) If S D fag and jKj D 1; then output a.

(3) Let s be an element chosen from S uniformly at random.

(4) By comparing s with the elements in S , determine the two sets S� and S> of elements
less of equal to s and greater than s, respectively. At the same time, compute r.s/,
the rank of s in S . Use r.s/ to partition K into K� and K>.

(5) If jK�j > 0, call QUICK-MULTISELECT recursively on .S�; K�/.

(6) If jK>j > 0, call QUICK-MULTISELECT recursively on .S>; K>/.



178 M. H. Alsuwaiyel

Clearly, in Step 2 of the algorithm, recursion should be halted when the input size be-
come sufficiently small. It was stated this way only for the sake of simplifying the analysis
of the algorithm and to make it more general (so that it will degenerate to QUICKSORT when
r D n).

4. ANALYSIS OF THE ALGORITHM

Now we analyse the running time of the algorithm. First, we show that the recursion depth
is O.log n/ with high probability. Next, we show that its running time is O.n log r/ with
high probability too.

Fix a target element t 2 S , and let the intervals containing t throughout the execution
of the algorithm be I t

0; I t
1; I t

2; : : : of sizes n D nt
0; nt

1; nt
2; : : : Henceforth, we will drop the

superscript t , and it should be understood from the context. In the j th partitioning step, a
pivot vj chosen randomly partitions the interval Ij into two intervals, one of which is Ij C1.
Assume without loss of generality that n � 1 .mod 4//. Then, nj C1 � 3nj =4 if and only
if vj is within a distance at most .n � 1/=4 from the median. Hence, the probability that
nj C1 � 3nj =4 is

1 C 2.n � 1/=4

n
D n C 1

2n
>

1

2
:

Let d D 16 ln.4=3/ C 4. For clarity, we will write lg x in place of log4=3 x.

Lemma 1. For the sequence of intervals I0; I1; I2; : : : , after dm partitioning steps,
jIdmj � .3=4/mn with probability at least 1�c1..4=3/�2m/, where c1 is a positive constant.
Consequently, the algorithm will terminate after d lg n partitioning steps with probability
at least 1 � c2.n�1/, where c2 is a positive constant.

Proof. A partitioning step is called successful if it decreases the size of each induced
interval to at least 3=4 of the initial size. Since each successful partitioning decreases an
interval size to 3=4 or less of the the initial size, the number of successful splittings needed
to reduce the size of I0 to at most .3=4/mn is at most m. Therefore, it suffices to show that
the number of failures exceeds dm � m with probability O..4=3/�2m/.

Define the indicator variable Xj , 0 � j < dm, to be 1 if nj C1 > 3nj =4 and 0 if
nj C1 � 3nj =4. Let

X D
dm�1X

j D0

Xj ;

so X counts the number of failures. Clearly, as shown above, X1; X2; : : : are independent
with PfXj D 1g � 1=2, j D 0; 1; : : : ; dm � 1. Hence,

� D EŒX� D
dm�1X

j D0

EŒXj � D
dm�1X

j D0

PŒXj D 1� � dm

2
:

We apply the Chernoff inequality

PfX � .1 C ı/�g � exp.��ı2=4/; 0 < ı < 2e � 1;



A random algorithm for multiselection 179

to derive an upper bound for the number of failures. Namely, we estimate the probability
PfX � dm � mg as follows:

PfX � dm � mg D PfX � .2 � 2=d/.dm=2/g D PfX � .1 C .1 � 2=d//.dm=2/g

� exp

��.dm=2/.1 � 2=d/2

4

�
D exp

��m.d � 4 C 4=d/

8

�

� exp

��m.d � 4/

8

�
D exp

��m.16 ln.4=3//

8

�

D e�2m ln.4=3/ D .4=3/�2m:

Consequently,

PfjIdmj � .3=4/mng � PfX < dm � mg � 1 � .4=3/�2m:

Since the algorithm will terminate when the sizes of all active intervals becomes 1,
setting m D lg n, we obtain

PfjId lg nj � 1g D PfjId lg nj � .3=4/lg n ng
� PfX < d lg n � lg ng � 1 � .4=3/�2 lg n D 1 � n�2:

Since the number of targets (and hence intervals) can be as large as �.n/, using Boole’s
inequality, we conclude that the algorithm will terminate after d lg n partitioning steps with
probability at least 1 � cn�1, where c is a positive constant.

Theorem 1. The running time of the algorithm is O.n log r/ with probability at least
1 � c=n, where c is a positive constant.

Proof. The algorithm will go through two phases: the first phase consists of the first
log r iterations and the remaining iterations constitute the second phase. The first phase
consists mostly of the first log r iterations of Algorithm QUICKSORT, while the second
phase is mostly an execution of Algorithm QUICKSELECT. At the end of the first phase, the
number of intervals will be r C1, with at most r being active. Throughout the second phase,
the number of active intervals will also be at most r . In each iteration, including those in
the first phase, an active interval I is split into two intervals. If both intervals are active,
then they will be retained, otherwise one will be discarded. Thus, for q � 0, after 2q log r

iterations, O.rq/ intervals will have been discarded, and at most r will have been retained.
Clearly, the time needed for partitioning the set S in the first phase of the algorithm is

O.n log r/. As to partitioning the set K of ranks, which is sorted, binary search can be
employed after each partitioning of S . Since jKj D r , binary search will be applied at most
r � 1 times for a total of O.r log r/ extra steps.

Now we use Lemma 1 to bound the running time required for the second phase. In
this phase, with high probability, there are at most d lg n � log r iterations with at most
r intervals, whose total number of elements is less than n at the beginning of the second
phase. By Lemma 1, it follows that, with high probability, the number of comparisons in
the second phase is upperbounded by

rX

tD1

d lg n�log rX

j D1

�
3

4

�j

jI t
log r j

rX

tD1

jI t
log r j

d lg n�log rX

iD1

�
3

4

�j

< n

1X

iD0

�
3

4

�j

D 4n:



180 M. H. Alsuwaiyel

Consequently, the time taken by the second phase is O.n/. As a result, the overall time
taken by the algorithm is O.n log r/ with probability at least 1 � c=n, where c is a positive
constant.

5. CONCLUSION

In this research, we have presented an efficient randomised algorithm for the multiselec-
tion problem that runs in time O.n log r/ with probability at least 1 � c=n, where c is a
positive constant. Algorithm QUICK-MULTISELECT can be viewed of as a unifying ap-
proach to randomised selection, multiselection and sorting, as it degenerates to Algorithm
QUICKSELECT when r D 1 and to Algorithm QUICKSORT when r D n. Obviously, in
practice, the algorithm should be used only for multiselection with the condition that r is
not too large, that is, r should be in order of O.n"/ for a sufficiently small " as any other
algorithm for multiselection.

ACKNOWLEDGEMENT

The author is grateful to King Fahd University of Petroleum and Minerals for their continual
support. Thanks to an anonymous reviewer for his valuable comments.

REFERENCES

1. S. G. Akl, The Design and Analysis of Parallel Algorithms. Prentice Hall, Englewood Cliffs,
New Jersey, 1989.

2. M. H. Alsuwaiyel, An optimal parallel algorithm for the multiselection problem. Parallel Com-
puting (2001) 27, 861–865.

3. M. H. Alsuwaiyel, An efficient and adaptive algorithm for multiselection on the PRAM. Proc.
ACIS 2nd Int. Conf. on Software Engineering, Artificial Intelligence, Networking, and Paral-
lel/Distributed Computing (2001) 140–143.

4. M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan, Time bounds for selection. J.
Comput. Syst. Sci. (1973) 7, 448–461.

5. R. W. Floyd and R. L. Rivest, Expected time bounds for selection. Commun. ACM (1975) 18,
165–172.

6. M. L. Fredman and T. H. Spencer, Refined complexity analysis for heap operations. J. Comput.
Syst. Sci. (1987), 269–284.

7. C. A. R. Hoare, FIND(Algorithm 65). Commun. ACM (1961) 4, 321–322.

8. H. Shen, Optimal parallel multiselection on EREW PRAM. Parallel Computing (1997) 23,
1987–1992.

9. H. Shen, Efficient parallel multiselection on hypercubes. In: Proc. 1997 Intern. Symp. on Parallel
Architectures, Algorithms and Networks. IEEE CS Press, 1997, pp. 338–342.

10. H. Shen, Optimal multiselection in hypercubes. Parallel Algorithms and Appl. (2000) 14, 203–
212.

11. H. Shen, Y. Han, Y. Pan, and D. J. Evans, Optimal parallel algorithms for multiselection on
mesh-connected computers. Intern. J. Comput. Math. (2003) 80, 165–179.

12. H. Shen and F. Chin, Selection and multiselection on multi-dimensional meshes. Proc. Intern.
Conf. on Parallel and Distributed Processing Techniques and Appl. 2002, 899–906.




