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Given a graph G on n vertices, the total distance of G is defined as σG = (1/2)
∑

u,v∈V (G) d(u, v), where
d(u, v) is the number of edges in a shortest path between u and v. We define the d-dimensional hypercube
tree Td and show that it has a minimum total distance σ(Td) = 2σ(Hd) − (

n
2

) = (dn2/2) − (
n
2

)
over all

spanning trees of Hd , where Hd is the d-dimensional binary hypercube. It follows that the average distance
of Td is μ(Td) = 2μ(Hd) − 1 = d(1 + 1/(n − 1)) − 1.

Keywords: average distance; total distance; average delay; wiener index; hypercube tree

2000 AMS Subject Classification: 05C12; 05C05; 05C85; 05C90

1. Introduction

Let G = (V , E) be a connected undirected graph with |V (G)| = n. The order of G is n. For
u, v ∈ V (G), the distance between u and v, denoted by dG(u, v), is the length of a shortest path
between u and v, where the length of a path is defined as the number of edges along the path. For
u, v ∈ V (G), the distance of v is defined as

dG(v) =
∑

u∈V (G)

dG(v, u).

The total distance of the graph G is defined as

σ(G) = 1

2

∑
vεV (G)

dG(v),

that is, the sum of distances between all unordered pairs. The average distance is defined as

μ(G) = 1(
n

2

)σ(G).
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The average distance, also known as transmission delay, is one of the most important measures of
the efficiency of an interconnection network modelled by a graph. The diameter of a graph, which
is the maximum node-to-node distance, is one of the factors taken into account when investigating
a communication network. However, these pairs of nodes realizing the diameter may account for
only a small fraction of the total number of pairs. Therefore, the average distance may be a more
effective measure of the average performance of a network than its diameter, as it is an indicator
for the expected travel time between two randomly chosen points of the network.

The average distance has been investigated by several authors and under different names,
such as mean distance [6], total distance [14], transmission [15], total routing cost [20], and the
Wiener index [3,19], with the latter being the oldest and most common. Given a network, which is
modelled by a graph G, it may be possible to replace G by a subgraph H of G without significantly
affecting the quality of communication. In this work, it is shown that in the case of the hypercube
network, using the hypercube tree instead (which is defined in Section 3), it is possible to reduce
the number of links by a factor of log n at the expense of increasing the average distance by a
factor less than 2.

The algorithmic aspects of the average distance are investigated in [4,6]. In general, when the
graph is weighted, finding a spanning tree with minimum average distance (or total distance),
also called an MAD, is NP-hard [12]. Entringer et al. [7] showed that there is a spanning tree
whose average distance is less than twice the average distance of the original, and that such a tree
can be found in polynomial time. The Wiener index, defined as σG, was originally introduced
by Harold Wiener [19] in 1947 and has numerous applications in physical chemistry [13]. It has
been extensively studied (see [3] for an excellent survey and results).

The hypercube tree, which will be defined in Section 3, is known in the literature as the ‘spanning
binomial tree’ (SBT) mostly in the context of communication and broadcasting in the hypercube
[1,8,10]. The names ‘completely unbalanced spanning tree’(CUST) [21] and ‘hypercube tree’also
appeared in the contexts of fault-tolerant computing and diagnosis of hypercube multicomputer
systems to isolate faulty processors [5].

Broadcasting and personalized communication in a hypercube is done by constructing an SBT
with a root at the source node and following the links of this tree to broadcast the message to all
the nodes [8,10]. In [1], the same strategy (with some modification) was used for broadcasting in
the multilevel hierarchical hypercube network MLH.

Distributed-memory hypercube computers are exposed to faults at the node and edge levels,
which result in significant performance degradation. Expensive approaches were proposed to
improve the fault tolerance of hypercube networks by using spares or by reconfiguration [17,18],
such as the use of spare links and nodes [2], augmenting each node with one extra node [9],
the use of multiple virtual nodes on each node for workload redistribution under faults [16], or
reconfiguring the run-time system [17] in the case of faults. For a fixed number of nodes, the
CUST used in [18] requires much less number of edges than a hypercube. When the number of
faulty edges and their distribution still allow a tree to be formed in hypercube, reconfiguring the
running application to a tree provides a continuation scheme in the presence of faults. In other
words, a running hypercube application may switch to a tree-like reconfiguration in the presence
of faulty edges. This leads to a smooth degradation in application throughput as the network
performance is only twice that of the original hypercube. So, the tree presents a reconfiguration
scheme for improving hypercube resilience to faulty edges.

2. Preliminaries

The eccentricity of a node v, denoted by ecc(v), in a connected graph G is the length of a longest
of all shortest paths between v and every other node in G. The maximum eccentricity is the graph
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1210 M.H. Alsuwaiyel

diameter. The minimum graph eccentricity is called the graph radius, denoted by ρ(G). The centre
C of a graph is the set of vertices of graph eccentricity equal to the graph radius (also called the
set of central points). A branch B of a tree T at a vertex v is a maximal subtree containing v as
a leaf. The weight of a branch B, denoted by bw(B), is the number of edges in B. The branch
weight of a vertex v, denoted by bw(v), is the maximum branch weight among all branches at
v. Equivalently, bw(v) is the maximum number of vertices in a connected component of T − v.
A centroid of a tree T is the set of vertices of T with minimum branch weight. The following
theorem is due to Jordan [11].

Theorem 1 If C is the centroid of a tree T of order n, then one of the following holds: (i)
C = {c} and bw(c) ≤ (n − 1)/2; (ii) C = {c0, c1} and bw(c0) = bw(c1) = n/2. In both cases, if
v ∈ V (T ) − C, then bw(v) ≥ n/2.

Zelinka [21] characterized the set of vertices with minimum distance in a tree.

Theorem 2 The set of vertices with minimum distance in a tree T is the centroid C of T .

3. The hypercube tree

The (binary) d-dimensional hypercube Hd, d ≥ 0, is defined as an undirected graph with n = 2d

vertices and dn/2 = d2d−1 edges. The vertices are labelled with all elements in {b1b2 · · · bd |bi ∈
{0, 1}}, and there is an edge between two vertices u and v if and only if u and v differ in exactly one
bit. The left subcube or 0-cube 0Hd is the induced subgraph of Hd on {0b1b2 · · · bd−1|bi ∈ {0, 1}}.
Similarly, the right subcube or 1-cube 1Hd is the induced subgraph of Hd on {1b1b2 · · · bd−1|bi ∈
{0, 1}}.

For d = 1, 2, . . ., we define the d-dimensional hypercube tree rooted at vertex 00 · · · 0(d zeros),
which we denote by Td , as a rooted tree whose set of vertices is V (Hd), and whose set of edges
E(Hd) is constructed using one of the following two construction methods (see Figure 1 for
an example).

(1) Recursive: Ifd = 1, thenE(T1) = {(0, 1)}. Otherwise,Td is constructed recursively by linking
the roots of two copies of Td−1 by an edge and designating one of its two ends as the root.
That is,

E(Td) = {(0u, 0v)|(u, v) ∈ E(Td−1)} ∪ {(1u, 1v)|(u, v) ∈ E(Td−1)} ∪ {(0d , 10d−1)}.
(2) Iterative: If d = 1, then E(T1) = {(0, 1)}. Otherwise, Td is constructed from Td−1 by attaching

a leaf node to each vertex in Td−1. That is,

E(Td) = {(u0, v0)|(u, v) ∈ E(Td−1)} ∪ {(v0, v1)|v ∈ V (Td−1)}.

Figure 1. Construction of T3 from T2. (a) recursive. (b) iterative.
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It should be noted that Td can be constructed by applying ordinary breadth-first traversal on Hd

starting from vertex 0d . However, using BFS costs �(dn) = �(n log n), while direct construction
costs only �(n).

Similar to the hypercube, we define the left subtree or 0-tree 0Td as the induced subtree of Td

on V (0Hd) and the right subtree or 1-tree 1Td as the induced subtree of Td on V (1Hd). In other
words, 0Td is Td−1 with every label prefixed with 0 and 0Td is Td−1 with every label prefixed with
1. For brevity, we will call a vertex even (odd) if its label is the binary representation of an even
(odd) integer.

Theorem 3 Ford = 1, 2, . . . , letTd andT ′
d be two trees obtained using the iterative and recursive

construction methods, respectively. Then, Td = T ′
d .

Proof Fix a vertex v = x1x2 · · · xj−1100 · · · 0 (different from the root 00 · · · 0), where |v| = d,
and xi ∈ {0, 1}, 1 ≤ i < j ≤ d . We show in both constructions that

p(v) = x1x2 · · · xj−1000 · · · 0

is the parent of v. By construction of Td , when v was first created at possibly some earlier stage
of the construction, its label was of the form x1x2 · · · xj−11 and the label of its parent was of the
form x1x2 · · · xj−10. From that point on, a zero would be appended to the labels of both v and
p(v). This proves the parental relationship assertion for Td .
We now prove the assertion for T ′

d . To this end, rewrite v as

v = yj−1yj−2 · · · y1100 · · · 0.

We show, by induction on d , that the parent of v in T ′
d is

p(v) = yj−1yj−2 · · · y1000 · · · 0.

Let y0 = 1 in the definition of v and y0 = 0 in the definition of p(v). When d = 1, v = 1 and the
parent of vertex 1 is 0. So assume that d ≥ 2. Let u′ and v′ be two vertices in T ′

d−1, where

u′ = yj−2yj−3 · · · y1000 · · · 0 and v′ = yj−2yj−3 · · · y1100 · · · 0;

both of length d − 1. By induction, u′ = p(v′). To construct T ′
d from T ′

d−1, the edge (u′, v′) will
be doubled: one copy will belong to the 0-tree of T ′

d , in which case the labels of both u′ and v′
are prefixed with 0, and the other copy will belong to the 1-tree of T ′

d , in which case the labels of
both u′ and v′ are prefixed with 1. Hence, in T ′

d , if yj−1 = 0, then

p(0yj−2yj−3 · · · y1100 · · · 0) = (0yj−2yj−3 · · · y1000 · · · 0),

and, if yj−1 = 1, then

p(1yj−2yj−3 · · · y1100 · · · 0) = (1yj−2yj−3 · · · y1000 · · · 0).

We conclude that the parental relationship assertion is true for T ′
d too.

Now, since v is arbitrary, it follows that the parent of any vertex other than the root is the same in
both trees Td and T ′

d . This, in turn, implies the natural isomorphism φ : V (T ) → V (T ′) defined
by φ(v) = v for all v in {0, 1}d , from which we conclude that Td = T ′

d . �
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1212 M.H. Alsuwaiyel

4. Computing the total distance

First, we compute the distance of the root of TddTd
(0d) = ∑

w∈V (Td ) dTd
(0d , w), and establish

some relationship between distances in the hypercube tree Td and its corresponding hypercube
graph Hd .

Lemma 1 Let Td be a d-dimensional hypercube tree. Then,

(i) ∀v ∈ V (Td) dTd
(0d , v) = dHd

(0d , v);
(ii) dTd

(0d) = dHd
(0d) = dn/2.

Proof (i) The proof is by induction on d ≥ 1. For d = 1, it is true, so suppose that d ≥ 2. Observe
that, by construction, for any vertex 0u in the 0-tree 0Td,

dTd
(0d , 0u) = d0Td

(0d , 0u)

= dTd−1(0
d−1, u) (1)

= dHd−1(0
d−1, u) (by induction)

= dHd
(0d , u), (2)

and for any vertex 1v in the 1-tree 1Td ,

dTd
(0d , 1v) = 1 + d1Td

(10d−1, 1v)

= 1 + dTd−1(0
d−1, v) (3)

= 1 + dHd−1(0
d−1, v) (by induction)

= dHd
(0d , 1v). (4)

Hence, we conclude that

∀v ∈ V (Td) dTd
(0d , v) = dHd

(0d , v).

(ii) Since there are n/2 distances from 0d to vertices in the 0-tree and n/2 distances from 0d to
vertices in the 1-tree, which additionally contribute n/2 to the total distance, and by Equations
(1) and (3), dTd

(0d) can be expressed by the recurrence

dTd
(0d) =

{
1 if d = 1,

2dTd−1(0
d−1) + (n/2) if d > 1,

whose solution is dTd
(0d) = dn/2. By part (i), dTd

(0d) = dHd
(0d) = dn/2. �

Theorem 4 The total distance of the hypercube tree Td is

σ(Td) = 2σ(Hd) −
(

n

2

)
= dn2

2
−

(
n

2

)
,

which is minimal over all spanning trees of Hd .
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Proof First, note that by Lemma 1 and the symmetry of the hypercube graph,

σ(Hd) = n

2
dHd

(0d) = dn2

4
. (5)

Next, we find the total distance between all vertices in the 0-tree and all vertices in the 1-tree. Let
u ∈ 0Td and v ∈ 1Td . Then, we have (Figure 2)

dTd
(u, v) = d0Td

(u, 0d) + (1 + d1Td
(10d−1, v)).

Using Equations (2) and (4), we obtain,

dTd
(u, v) = dHd

(0d , u) + dHd
(0d , v). (6)

Summing over all vertices u ∈ 0Td and v ∈ 1Td yields∑
u∈0Td

∑
v∈1Td

dTd
(u, v) =

∑
u∈0Hd

∑
v∈1Hd

(
dHd

(0d , u) + dHd
(0d , v)

)
(7)

= n

2

∑
u∈0Hd

dHd
(0d , u) + n

2

∑
v∈1Hd

dHd
(0d , v)

= n

2

∑
w∈Hd

dHd
(0d , w)

= n

2
dHd

(0d)

= σ(Hd),

where the last equality follows from Equation (5). Since σ(Td) is the sum of total distances in the
0-tree, 1-tree, and the total distance between all vertices in the 0-tree and all vertices in the 1-tree,
σ(Td) can be expressed by the recurrence

σ(Td) =
{

1 if d = 1,

2σ(Td−1) + σ(Hd) if d > 1.

whose solution is

σ(Td) = 2σ(Hd) −
(

2d

2

)
,

and, by Equation (5),

σ(Td) − d22d

2
−

(
2d

2

)
.

Finally, note that, by Equation (7), the total distance between vertices in 0Td and 1Td , whose paths
must pass through the centroid, is minimum. Hence, if we assume that σ(Td−1) is minimum, then
it follows by induction that σ(Td) is also of minimum value. �

Figure 2. Proof of Theorem 4.
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1214 M.H. Alsuwaiyel

Theorem 4 gives rise to the following sequence for σ(Td), d = 1, 2, . . .

1, 10, 68, 392, 2064, 10272, . . . .

Let T = (V , E) be a tree and e = (u, v) be an edge of T . Let nu(e) denote the number of vertices
of T lying closer to u than to v, and let nv(e) denote the number of vertices of T lying closer to
v than to u. The following theorem was discovered by Wiener in 1947 [3,19].

Theorem 5 Let T = (V , E) be a tree. Then, σ (T ) = ∑
e∈E(T ) nu(e)nv(e).

Define the weight of an edge e as w(e) = nu(e)nv(e). For 1 ≤ j ≤ d, let Ej(Td) denote the
set of edges in E(Td) with weight n/2j (n − (n/2j )).

Proposition 1 Let Td be a d-dimensional hypercube tree. Then,

(i) E(Td) = E1(Td) ∪ E2(Td) ∪ · · · ∪ Ed(Td), and |Ej(Td)| = 2j−1, 1 ≤ j ≤ d;
(ii) σ(Td) = ∑d

j=1 2j−1n/2j (n − n/2j ).

Proof (i) If d = 1, then there is exactly one edge with weight 1, so suppose d ≥ 2. Assume
inductively that

E(Td−1) =
d−1⋃
j=1

Ej(Td−1), and |Ej(Td−1)| = 2j−1, 1 ≤ j ≤ d − 1.

Let e = (u, v) be an edge in Ej(Td−1) for some j , 1 ≤ j ≤ d − 1. By construction, Td is obtained
from Td−1 by attaching a leaf node to each vertex of Td−1. Hence, both nu(e) and nv(e) are doubled,
which means that E(Td) contains exactly 2j−1 edges with weight

2 × 2 × n/2

2j

(
n

2
− n/2

2j

)
= n

2j

(
n − n

2j

)
.

Since e = (u, v) is arbitrary, we conclude that |Ej(Td)| = 2j−1 for 1 ≤ j ≤ d − 1. Moreover,
there will be n/2 additional edges in Td with weight n − 1, that is, |Ed(Td)| = 2d−1. It follows
that E(Td) = ⋃d

j=1 Ej(Td), and for 1 ≤ j ≤ d , |Ej(Td)| = 2j−1.

(ii) Follows from (1) and Theorem 5. �

Figure 3. The horizontal edge in the middle is the central edge of I8.
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As illustrated in Figure 3, there is an edge (the central edge) with weight (n/2)2, two edges with
weight (n/4)(3n/4), and in general 2j−1 edges with weight n/2j (n − (n/2j )). In this figure, the
horizontal edge in the middle is the central edge of T8.

5. Mean distance

The average distance of the hypercube of dimension d ≥ 1 is computed as

μ(Hd) = 1(
n

2

)σ(Hd)

= dn2

4

(
n

2

)

= dn

2 (n − 1)

= d

2

(
1 + 1

n − 1

)
.

Similarly, the average distance of the hypercube tree of dimension d ≥ 1 is computed as

μ(Td) = 1(
n

2

)σ(Td)

= 1(
n

2

) (
2σ(Hd) −

(
n

2

))

= 2μ(Hd) − 1

= d

(
1 + 1

n − 1

)
− 1.

(8)

Hence, we have the following.

Theorem 6 The average distance of the hypercube tree is μ(Td) = d(1 + 1/(n − 1)) − 1.

6. Conclusion

Given a graph G, let s(G) = min{σ(T )/σ (G)|T is a spanning tree of G}. In [7], Entringer et al.
have shown that for a connected graph G of order n, s(G) ≤ 2(1 − 1/n), and equality is achieved
if and only if G = Kn and T = K1,n−1. In [3], Dobrynin et al. stated that the dependence of s

on the density of G is not clear and conjectured that if T is of minimum total distance over all
possible spanning trees of Hd , then

s(Hd) = 2

(
1 − 1

d

)
+ 1

d2d−1
∼ 2. (9)
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1216 M.H. Alsuwaiyel

In Theorem 4, we proved that σ(Td) is of minimum total distance among all spanning trees of
Hd . Consequently, by Equation (8),

s(Hd) = 2 − 1

μ(Hd)
= 2 − 2(n − 1)

dn
= 2

(
1 − 1

d

)
+ 1

d2d−1
,

and s(Hd) has 2 as its limiting value.
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