
Computers and Mathematics with Applications 60 (2010) 2200–2203

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

On computing an optimal permutation of ranks for multiselection
M.H. Alsuwaiyel
Department of Information and Computer Science, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

a r t i c l e i n f o

Article history:
Received 28 October 2009
Received in revised form 22 July 2010
Accepted 22 July 2010

Keywords:
Multiselection
Selection
Algorithms
Dynamic programming

a b s t r a c t

Given a set of n elements, and a sorted sequence K = k1, k2, . . . , kr of positive integers
between 1 and n, it is required to find the kith smallest element for all values of i, 1 ≤ i ≤ r .
We present a dynamic programming algorithm for computing an optimal permutation
of the input ranks that results in the least number of comparisons when used as a
preprocessing step with any algorithm that uses repetitive calls to an algorithm for
selection. The running time of the proposed algorithm is O(r3).

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Let S be a set of n numbers, and K = k1, k2, . . . , kr be a sorted sequence of positive integers between 1 and n. The
multiselection problem is to find the kith smallest element, denoted by ai, for all values of i, 1 ≤ i ≤ r . It has important
applications in order statistics and set theory [1,2]. It seems that the algorithm in [1], which we will refer to as mselect, is
the only existing (sequential) deterministic algorithm. The algorithm is straightforward: Find the kth smallest element ak,
where k = ⌈r/2⌉, and partition the set of remaining elements S − {ak} into two subsets S1 and S2 of elements smaller
and larger than ak, respectively. Next, make two recursive calls, one with S1 and K1 = k1, k2, . . . , k⌈r/2⌉−1, and the other
with S2 and K2 = k⌈r/2⌉+1 − k, k⌈r/2⌉+2 − k, . . . , kr − k. The algorithm is shown in Fig. 1. Here, Algorithm select is the
well-known classical deterministic linear time algorithm [3]. Recently, a randomized algorithm that runs in time O(n log r)
with probability 1 − O(n−1) appeared in [4]. It seems that the first parallelization of the multiselection problem was that
of Shen [5], in which he presented an optimal parallel algorithm that runs in time O(nϵ log r) on the EREW PRAMwith n1−ϵ

processors, 0 < ϵ < 1. More on the work of Shen on parallel algorithms for the multiselection problem on interconnection
networks can be found in [6–9].

The way by which Algorithmmselect processes the set of ranks is input-insensitive in the sense that the order in which
processing ranks takes place is fixed regardless of their values or the size of S. Consider, for example, the instance in which
K = 1, 2, 5, 10 and n = |S| = 12. The algorithm will find a2, a1, a5 and a10, in this order. Clearly, it is more efficient to start
by finding a5, and then proceed to find the elements corresponding to the remaining ranks: 1, 2, 10. This is because when
finding a1 and a2, all elements of rank 5 or more will not be processed by Algorithm select. Now, suppose we change the
size of S to n ≥ 20. Clearly, processing rank 10 first will force the algorithm to discard all elements greater than or equal
to a10, which results in reducing the number of redundant element comparisons significantly.

From the simple example above, it is eminent that a better ordering of the input ranks is desirable, which would
render the algorithm sensitive to changes in the set of ranks and/or the size of S. This should cause the algorithm to avoid
performing unnecessary redundant comparisons. In the next section, an algorithm for computing an optimal permutation of
ranks is developed. It finds an optimal arrangement of ranks that minimizes the total number of comparisons. The
algorithm presented uses the dynamic programming paradigm, and it turns out that it is similar to that for matrix chain

E-mail address: suwaiyel@kfupm.edu.sa.

0898-1221/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2010.07.040

http://dx.doi.org/10.1016/j.camwa.2010.07.040
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:suwaiyel@kfupm.edu.sa
http://dx.doi.org/10.1016/j.camwa.2010.07.040


M.H. Alsuwaiyel / Computers and Mathematics with Applications 60 (2010) 2200–2203 2201

Fig. 1. The original multiselection algorithm.

multiplication: Given matrices M1,M2, . . . ,Mr , find the order by which these matrices are to be multiplied in order to
minimize the total number of scalar multiplications.

2. Computing an optimal permutation of ranks

Algorithm mselect makes use of the input sequence k1, k2, . . . , kr , where k1 < k2 < · · · < kr , for processing the set
of ranks in the order ki1 , ki2 , . . . , kir , where i1 = ⌈|K |/2⌉ = ⌈r/2⌉, i2 = ⌈|K1|/2⌉, etc. In this section, an algorithm is
presented for deriving a permutation π∗, which should result in the least total number of element comparisons performed
by Algorithm mselect. In what follows, the names permutation, arrangement and ordering will be used interchangeably.

Algorithm mselect makes repetitive calls to Algorithm selectwith parameters
(Si1 , ki1), (Si2 , ki2), . . . , (Sir , kir ), (1)

in some order, where Si1 = S, ki1 = k⌈r/2⌉, and for 2 ≤ j ≤ r , Sij ⊆ S. As Algorithm select is a deterministic linear
time algorithm, given any arbitrary input (S ′, k), its running time is at most c|S ′| for some positive constant c > 0 that is
dependent on the algorithm. Hence, the total running time of the calls in (1) is atmost

∑r
j=1 c nij , where nij = |Sij |, 1 ≤ j ≤ r .

It follows that π∗ is an optimal permutation of ranks if it minimizes the quantity
r−

j=1

nij . (2)

Hence, our task now reduces to finding a permutation π∗ that minimizes the value of the sum in (2).
For convenience and brevity, we extend the sequence K of ranks by adding two dummy ranks, namely k0 = 0

and kr+1 = n+1. So, let J = k0, k1, . . . , kr+1 be the extended set of ranks. Given two ranks ki and kj, where 0 ≤ i < j ≤ r+1,
we define the (open) interval Ii,j, j > i, bounded by the two ranks ki and kj, as the set of integers (strictly) greater than ki and
(strictly) less than kj. Note that ki may be 0 and kj may be n + 1. More precisely, the interval Ii,j associated with the two
ranks ki, kj, 0 ≤ i < j ≤ r + 1, is defined by

Ii,j =


φ if j = i+ 1
{ki + 1, ki + 2, . . . , kj − 1} if j > i+ 1.

That is, for j > i + 1, Ii,j consists of all integers between ki and kj exclusive of ki and kj. The length of interval Ii,j is thus
defined as

L(Ii,j) =


0 if j = i+ 1
kj − ki − 1 if j > i+ 1,

and its cost is defined recursively as

C(Ii,j) =


0 if j = i+ 1
min
1<l<j
{L(Ii,j)+ C(Ii,l)+ C(Il,j)} if j > i+ 1. (3)

2.1. The dynamic programming algorithm

The detailed algorithm is shown in Fig. 2. Here we use the cost matrix M , whose row-indices range from 0 to r and
column-indices from 1 to r + 1, with the property thatM[i, j] holds the cost of interval Ii,j. That is,M[i, j] = C(Ii,j). Hence,
noting that for 0 < l < r + 1, Jl = kl, M[i, j] can be expressed as

M[i, j] =


0 if j = i+ 1
min
i<l<j
{J[j] − J[i] − 1+M[i, l] +M[l, j]} if j > i+ 1. (4)

In particular,
M[0, r + 1] = min

1≤l≤r
{n+M[0, l] +M[l, r + 1]} (5)

is the minimum total cost corresponding to the quantity expressed by Eq. (2).
Let diagonal d refer to that one inwhich j−i−1 = d, so themain diagonal is numbered 0 (recall that rows are numbered 0

to r and columns are numbered 1 to r + 1). The algorithm first initializes the main diagonal to 0’s, and proceeds by filling
diagonals 1, 2, . . . , r using Eq. (4). This is done in Steps 12–19 of the algorithm.



2202 M.H. Alsuwaiyel / Computers and Mathematics with Applications 60 (2010) 2200–2203

Fig. 2. The dynamic programming algorithm.

The ordering of ranks is defined by a binary tree T that is constructed by tracing back the computation of M as follows.
The root of T is J[p] = kp, where p, 1 ≤ p ≤ r , is that value of l, which minimizes M[0, r + 1] in Eq. (5). The left and right
subtrees of T are defined recursively by the two values of l that minimized M[0, p] and M[p, r + 1] in Eq. (4). The binary
tree is constructed in Steps 20–22 of the algorithm. Finally, a preorder traversal of T using a stack in Steps 26–23 gives the
optimal permutation of ranks.

Consider, for example, the instance discussed in the introduction, in which K = 1, 2, 5, 10 and n = 12. First, K is
extended to J = 0, 1, 2, 5, 10, 13. At the end of the algorithm,

M =


0 1 5 14 24
0 0 3 11 21
0 0 0 7 17
0 0 0 0 7
0 0 0 0 0

 .

As an illustration, we will compute M[1, 4] (The four values in M used to compute M[1, 4] = 11 are shown in bold).
Since J[4] − J[1] − 1 = 10− 1− 1 = 8, substituting in Eq. (4) yields

M[1, 4] = min
1<l<4
{(J[4] − J[1] − 1)+M[1, l] +M[l, 4]}

= min{8+M[1, 2] +M[2, 4], 8+M[1, 3] +M[3, 4]}
= min{8+ 0+ 7, 8+ 3+ 0}
= 11.

Thematrix below, which wewill call Q , shows the values of rank, leftchild and rightchild at the end of the algorithm. As in
matrixM , rows are numbered 0 to r and columns are numbered 1 to r+1. As an example, the entryQ [0, 5] = 5, (0, 3), (3, 5)
means that the root is rank 5, its left child is Q [0, 3] (rank 2) and its right child is Q [3, 5](rank 10)

0, (), () 1, (0, 1), (1, 2) 2, (0, 2), (2, 3) 5, (0, 3), (3, 4) 5, (0, 3), (3, 5)
0, (), () 0, (), () 2, (1, 2), (2, 3) 5, (1, 3), (3, 4) 5, (1, 3), (3, 5)
0, (), () 0, (), () 0, (), () 5, (2, 3), (3, 4) 5, (2, 3), (3, 5)
0, (), () 0, (), () 0, (), () 0, (), () 10, (3, 4), (4, 5)
0, (), () 0, (), () 0, (), () 0, (), () 0, (), ()

 .

The binary tree T associated with the new permutation π∗ is shown in Fig. 3(a). A preorder traversal of T gives
π∗ = 5, 2, 1, 10, which is an optimal ordering. Fig. 3(b) shows the output binary tree when the size of S is changed to
n ≥ 20.



M.H. Alsuwaiyel / Computers and Mathematics with Applications 60 (2010) 2200–2203 2203

a b

Fig. 3. Binary tree representation of the final permutation π∗: (a) n = 12. (b) n = 20.

Now it remains to show how to use the new permutation in computing the elements in S with the ranks in K rearranged
(if necessary) as in π∗. For this, we only need to modify Algorithm mselect so that it processes the ranks in the right order.
When constructing K1 and K2, it is important that their relative order in π∗ be preserved. In other words, if ki and kj are both
in K1 (K2) and ki precedes kj in K , then ki also precedes kj in K1 (K2). Hence, Steps 1 and 4 of Algorithm mselect are simply
changed to

1. k← K [1]
4. K1 ← ⟨kj|kj ∈ K and kj < k⟩; K2 ← ⟨kj − k|kj ∈ K and kj > k⟩.

Another possibility is to change the form in which the new permutation is generated. For instance, Algorithm opt-
perm can be modified so that it outputs the sequence in the form of a tree: (left subtree, rank, right subtree). In the above
example, the output may look like

( ( ( 1 ) 2 ( ) ) 5 ( ( ) 10 ( ) ) ) ,

which is the tree shown in Fig. 3(a). A preorder traversal is then used; k = 5, K1 corresponds to the left subtree, and
K2 corresponds to the right subtree.

As a consequence of the principle of optimality in dynamic programming, it is noteworthy that if the ranks in K have
optimal ordering, then the orderings in both K1 and K2 are also optimal.

2.2. Correctness and complexity

The proof of algorithm’s correctness is embedded in its description. Eq. (4) guarantees that the output permutation π∗ is
optimal. Clearly, the amount of work done by the algorithm is in the order of O(r3), and the space required is in the order of
O(r2). The algorithm is to be used as a preprocessing step for Algorithmmselect (or any other multiselection algorithm that
works by using an algorithm for selection for all ranks). Since the running time of Algorithmmselect isO(n log r), the overall
running time becomes O(r3 + n log r), which is O(n log r) whenever r = O((n log r)1/3). In particular, when r = O(logk n)
for some k > 0, i.e., polylogarithmic in n, then since logk n = o(n), the running time of Algorithm mselect combined with
Algorithm opt-perm is O(log3k n+n log logk n) = O(n log log n). If the input ranks are clustered in a relatively small interval,
say kr −k1+1 = O(nϵ), 0 < ϵ < 1, then the running time should be in the order ofΘ(n). This is because the algorithmwill
find the element(s) on the boundary of the interval in the first few iterations, after which the size of S is reduced to O(nϵ).

References

[1] M.L. Fredman, T.H. Spencer, Refined complexity analysis for heap operations, Journal of Computer and System Sciences (1987) 269–284.
[2] D.G. Kirkpatrick, A unified lower bound for selection and set partitioning problems, Journal of the Association for Computing Machinery 28 (1981)

150–165.
[3] M. Blum, R.W. Floyd, V.R. Pratt, R.L. Rivest, R.E. Tarjan, Time bounds for selection, Journal of Computer and System Sciences 7 (1973) 448–461.
[4] M.H. Alsuwaiyel, A random algorithm for multiselection, Journal of Discrete Mathematics and Applications 16 (2) (2006) 175–180. 6.
[5] H. Shen, Optimal parallel multiselection on EREW PRAM, Parallel Computing 23 (1997) 1987–1992.
[6] H. Shen, Efficient parallel multiselection on hypercubes, in: Proc. 1997 Intern. Symp. on Parallel Architectures, Algorithms and Networks, I-SPAN, IEEE

CS Press, 1997, pp. 338–342.
[7] H. Shen, Optimal multiselection in hypercubes, Parallel Algorithms and Applications 14 (2000) 203–212.
[8] H. Shen, Y. Han, Y. Pan, D.J. Evans, Optimal parallel algorithms for multiselection on mesh-connected computers, International Journal of Computer

Mathematics 80 (2) (2003) 165–179.
[9] H. Shen, F. Chin, Selection and multiselection on multi-dimensional meshes, in: Proc. of the International Conference on Parallel and Distributed

Processing Techniques and Applications, 2002, pp. 899–906.


	On computing an optimal permutation of ranks for multiselection
	Introduction
	Computing an optimal permutation of ranks
	The dynamic programming algorithm
	Correctness and complexity

	References


