
Finding an Approximate Minimum-Link Visibility Path Inside aSimple PolygonMuhammad H. AlsuwaiyelDepartment of Information andComputer ScienceKing Fahd University of Petroleum &MineralsDhahran 31261, Saudi Arabiae-mail:facp079@saupm00.bitnet D.T. Lee1Department of Electrical Engineering andComputer ScienceNorthwestern UniversityEvanston, IL 60208e-mail: dtlee@eecs.nwu.eduKeywords: Computational geometry, approximation algorithm, simple polygon,visibility path, minimum link path.1 IntroductionIn [1] Alsuwaiyel and Lee showed that computing a minimum link path � inside a simplepolygon with n vertices such that the interior of the polygon is weakly visible from � isNP-hard. The authors also presented an O(n3 log n) time algorithm for producing an ap-proximate solution that was claimed to have no more than 3 times the number of links ofan optimal solution. In [2] Arkin et al. show that the problem of �nding a minimum-linkwatchman route in polygonal domains (with holes)2 is NP-complete and give a polynomial-time approximation algorithm with performance ratio of log n. In fact the algorithm in [1]gives a feasible solution with no bound guarantee. Here we describe in a more precise waythe approximation algorithm that constructs a watchman path as well as a tour in timemaxfm2;mng = O(n2), where m is the link-length of an optimal path, and show that in-deed a constant performance ratio of no more than 4 can be attained in a simple polygonaldomain (i.e., no holes). We also show that the performance ratio can be improved to 3:5with time bound maxfm3;mng = O(n3).2 PreliminariesLet x be any reex vertex adjacent to another vertex u in a simple polygon P . Let H be thein�nite half line originating at x in the direction from u to x. Let y be the intersection of Hand the boundary of P closest to x. Then, the directed line segmentw = xy is called a window1Supported in part by the National Science Foundation under the Grant CCR-9309743, and by the O�ceof Naval Research under the Grant No. N00014-93-1-0272.2The Minimum-link watchman route problem is to �nd a tour, instead of a path, such that the entirepolygonal domain is weakly visible. 1



and ux the edge generating w. Its start and end points will be denoted by X (w) and Y(w),respectively. If w is a window generated by ux, then it partitions P into two parts and thatpart which contains u is called the region of w, denoted by P (w). If w1 and w2 are twowindows such that P (w1) is contained entirely within P (w2), then w2 is called redundant,otherwise it is nonredundant. Since we will be working mainly with nonredundant windows,the quali�er \nonredundant" will be dropped throughout, unless a distinction is explicitlymade.Given a simple polygon P , let W denote its set of nonredundant windows. The windows inW , W �W, are called independent if 8 w;w0 2 W;P (w)\P (w0) = �. W is a maximal inde-pendent set of windows if 8 w 2 W �W 9 w0 2 W such that w and w0 are not independent.A set of windows H is said to be a maximum independent set of windows if it is a maximalindependent set of windows of maximum cardinality.A visibility path � for a given simple polygon P is a polygonal path contained in P with theproperty that any point in P is visible from at least one point on �. We say that P is weaklyvisible from �. The following theorem and lemma are basic to �nding a visibility path. Theproof of the theorem is a direct generalization of the case when the visibility path is a linesegment. The proof of this special case can be found in Ke[8]. The problem of �nding ashortest visibility segment can be solved in linear time[3] improving the previously knownO(n log n) time algorithm due to Ke[8].Theorem 1 Let � be a polygonal path inside a simple polygon P . Then, � is a visibilitypath for P if and only if it intersects all the regions P (w) of nonredundant windows w insideP .We will assume throughout that no three vertices in P are colinear. This assumption isessential in order to guarantee a constant performance ratio.Lemma 1 If no three vertices of P are colinear, then no line segment inside P intersectswith more than two independent windows.Proof. Let L = ab be a line segment inside P that intersects with more than two independentwindows. Without loss of generality, we may assume that for some two independent windowsw1 and w2 that L intersects with, a 2 P (w1) and b 2 P (w2). Let w3 be another independentwindow intersected by L. Since P (w1); P (w2) and P (w3) are pairwise disjoint, L cannotintersect with the interior of P (w3). Moreover, if L\w3 contains more than one point, thenwe must have L � w3 since w3 is a chord in P . Consequently, L\w3 consists of exactly onepoint, say c. It is not hard to see that the only possibility is that c = Y(w3) and indeed areex vertex of P . But this implies that c and the endpoints of the edge generating w3 arecolinear.Corollary 1 Let H � W be any independent set of windows. Then any window w 2 Wintersects with at most two windows in H. 2



Corollary 2 Let M �W be a maximum independent set of windows. Then the link-lengthof any optimal visibility path � is at least jM j � 1.Proof. By Theorem 1, � must intersect all members of M . By Lemma 1, at least one linesegment is needed in order for � to go from one window in M to the next.The idea of �nding an approximate minimum-link visibility path inside P consists of com-puting a set of points, which we will call special points. These points have the property thatif a polygonal path � passes through all of them then, as will be shown later, it is a visibilitypath. In Section 3 we show how to compute a set S of special points. In Section 4, we givethe approximation algorithm for computing an approximate visibility path.3 Construction of the special pointsThe following procedure constructs a maximum independent set of windows. It is essentiallythe same as that given in [9]. The proof that this algorithm does produce an independent setof maximum cardinality is similar to that of �nding a maximum independent set of circular-arcs, given in [9, 10] and is omitted. Pick an arbitrary window w and let it be numbered w1.Recall that the endpoints of a window wi are X (wi) and Y(wi). Assume that the endpointsare sorted in counterclockwise direction. The endpoint of a window w visited the �rst timeas we scan them in this direction is designated as X (w). Let next be a function from W toitself such that next(wi) = wj, where X (wj) lies after Y(wi), and between Y(wi) and X (wj)there exists no endpoint, X (wk) for any k.1. Let w = w1 and set M fwg.2. Set w0 next(w).3. While w0 6= w and w0 \ w = ; do the following:Set M M [ fw0g; w0 next(w0).4. If w0 = w then halt.5. Set M M � fwg [ fw0g.6. Set w next(w); w0 next(w0) and go to Step 3.The above procedure �nds a set of independent windows in a greedymanner. It will terminatewhen function next maps the set of windows in M to itself. Note that when all windowsintersect, 8w 2 W, next(w) = w0 for some w0 2 W, and M consists of exactly one window,i.e., fw0g. It is not hard to see that the time taken by this procedure is O(n) as w is reassignedin Step 6 at most n times, and w0 never bypasses w as they move in the counterclockwisedirection.An important property of a maximum independent set of windows M = fw1; w2; : : : ; wkgconstructed in this way is the following, whose proof is omitted.3



Lemma 2 Let M = fw1; w2; : : : ; wkg be a maximum independent set constructed in thegreedy algorithm. Then for any w 2 W �M there is a window w0 2M such that X (w) liesin the open interval de�ned by (X (w0);Y(w0)).Let w 2 W�M . Then w intersects some wi 2M; 1 � i � k = jM j. By Corollary 1 there arethree possibilities depending on whether w intersects wi�1 or wi+1 or neither (see Figure 1(a)through (c)). Note that w0 = wk, and wk+1 = w1. The case in Figure 1(d) cannot happen(Lemma 2). In this �gure, the boundary of P is represented by a circle.
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Figure 1: Possibilities of intersections of a window w with other windows in a maximumindependent set.Now, we partition W �M into k groups as follows.Wi = fw 2 W �M j X (w) 2 P (wi)g; 1 � i � k:Figure 2 provides an example of this grouping. In this �gure, a 2 Wk; b; c 2 W1 and d 2 W2.Similarly, all four windows originating from within P (wi) belong to Wi.Finally, we de�ne a set S = fp1; p2; : : : ; pkg of k special points, where pi = Y(wi); forwi 2 M; 1 � i � k. The intention is that these points will be the vertices of the visibilitypath to be constructed (see Figure 2 for example). The set S thus constructed will be referredto as the set of special points associated with the maximum independent set of windows M .Note that, as implied by Corollary 2, the length of any optimal visibility path � is at leastk � 1.Theorem 2 Let � be a polygonal path that visits all the special points computed as describedabove. Then � is a visibility path. 4
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Figure 2: An example of a set of special points in a simple polygon with respect to amaximum independent set of windows (boldlines).Proof. By Theorem 1, it su�ces to show that for any window w 2 W�M there is a specialpoint p 2 S such that p 2 P (w). Let w 2 Wi , where Wi; 1 � i � k; is a window group asexplained in the construction. By construction, X (w) 2 P (wi). This implies that pi is tothe right of w, i.e., pi 2 P (w). Note that P (w) of each window w 2 W�M contains exactlyone special point.4 Construction of an approximate minimum-link vis-ibility pathGiven a simple polygon P , the following algorithm computes an approximate minimum-linkvisibility path � for P .1. Compute the set of nonredundant windows W of P .2. Sort the endpoints in W in counterclockwise order.3. Compute a maximum independent set of windowsM = fw1; w2; : : : ; wkg and its associ-ated set of special points S = fp1; p2; : : : ; pkg as described in Section 3. It is importantto use such a construction so as to ensure that Lemma 2 holds.4. Find �i;j, a polygonal path of minimum link-length between each pair of windowswi; wj 2M .5. Let G be the complete graph whose node set isM ; to each edge of G assign a (positiveinteger) cost equal to the link distance between the corresponding windows.5



6. Construct a minimumcost spanning tree T for the graph G. Convert T into an Euleriangraph G0 by doubling its edges. Starting from a leaf node of T construct a tour t thatvisits all the nodes in M and bypasses all previously visited nodes. This is exactlythe well-known approximation algorithm for the geometric traveling salesman problem(GTSP). Convert t into a Hamiltonian path p = vi1; vi2; : : : ; vik by removing an edgein t (of maximum cost, say).7. Let wi1; wi2; : : : ; wik be the corresponding sequence of windows. Rename the windowsin this sequence as w1; w2; : : : ; wk. Let � = �1;2; �2;3; : : : �k�1;k. � is the sequence ofpolygonal paths corresponding to the sequence of edges in p.8. Convert � into a connected polygonal path � as follows. For each window wi; 2 �i � k � 1, let the two polygonal paths �i�1;i and �i;i+1 intersect wi at points ui and virespectively. Insert the two line segments uipi; and pivi into the sequence �. Also,add the two line segments p1u1 and ukpk to the beginning and end of the sequence,where u1 and uk are the intersections of w1 and wk with �1;2 and �k�1;k respect Let �be the resulting polygonal pathp1u1; �1;2; u2p2; p2v2; �2;3; u3p3; p3v3 : : : �k�2;k�1; uk�1pk�1; pk�1vk�1; �k�1;k; uk; pk:� is the desired path.Lemma 3 Let � be constructed as described in the algorithm above. Then j�j < 4j�0j, where�0 is any optimal path.Proof. Using an analysis similar to that of the well-known approximation algorithm for theGTSP, and noting that link-distances obey the triangle inequality, it is easy to see thatj�j = X�i;j2 � j�i;jj < 2j�0j:By Corollary 2, j�0j � k � 1, and since exactly 2k � 2 line segments have been added to thesequence of polygonal paths, we havej�j = j�j+ 2k � 2 < 2j�0j+ 2k � 2 � 4j�0j:The time complexity of the above algorithm is computed as follows. Step 1 takes O(n)time[4]. Step 2 takes O(n log n) time. Step 3 takes O(n) time[9]. Step 4 takesO(kn)[5, 6, 12],where k = jM j. By Corollary 2, k < m, wherem is the link-length of an optimal path. Hence,the time taken by this step is O(mn). The cost of building the complete graph G in Step 5is O(k2). The total time required by Step 6 is dominated by that of �nding a minimum costspanning tree, i.e., O(k2) = O(m2). Finally, the time taken by Steps 7 and 8 is O(n). Hence,the overall time taken by the algorithm is maxfm2;mng = O(n2).In[7], it is shown that Christo�des' heuristic can be modi�ed so that it applies to paths aswell. It is not hard to see that modifying Step 6 accordingly results in a performance ratio6
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