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1 Introduction

In [1] Alsuwaiyel and Lee showed that computing a minimum link path 7 inside a simple
polygon with n vertices such that the interior of the polygon is weakly visible from = is
NP-hard. The authors also presented an O(n”logn) time algorithm for producing an ap-
proximate solution that was claimed to have no more than 3 times the number of links of
an optimal solution. In [2] Arkin et al. show that the problem of finding a minimum-link
watchman route in polygonal domains (with holes)? is NP-complete and give a polynomial-
time approximation algorithm with performance ratio of logn. In fact the algorithm in [1]
gives a feasible solution with no bound guarantee. Here we describe in a more precise way
the approximation algorithm that constructs a watchman path as well as a tour in time
max{m? mn} = O(n?), where m is the link-length of an optimal path, and show that in-
deed a constant performance ratio of no more than 4 can be attained in a simple polygonal
domain (i.e., no holes). We also show that the performance ratio can be improved to 3.5
with time bound max{m?> mn} = O(n?).

2 Preliminaries

Let x be any reflex vertex adjacent to another vertex u in a simple polygon P. Let H be the
infinite half line originating at = in the direction from w to z. Let y be the intersection of H
and the boundary of P closest to x. Then, the directed line segment w = Ty is called a window
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2The Minimum-link watchman route problem is to find a tour, instead of a path, such that the entire
polygonal domain is weakly visible.



and uT the edge generating w. Its start and end points will be denoted by X'(w) and Y(w),
respectively. If w is a window generated by wz, then it partitions P into two parts and that
part which contains u is called the region of w, denoted by P(w). If wy and wy are two
windows such that P(w;) is contained entirely within P(w,), then wy is called redundant,
otherwise it is nonredundant. Since we will be working mainly with nonredundant windows,
the qualifier “nonredundant” will be dropped throughout, unless a distinction is explicitly
made.

Given a simple polygon P, let W denote its set of nonredundant windows. The windows in
W, W CW, are called independent if ¥ w,w’ € W, P(w)N P(w') = ¢. W is a mazimal inde-
pendent set of windows if ¥V w € W —W Fw' € W such that w and w’ are not independent.
A set of windows H is said to be a mazimum independent set of windows if it is a maximal
independent set of windows of maximum cardinality.

A wisibility path 7 for a given simple polygon P is a polygonal path contained in P with the
property that any point in P is visible from at least one point on 7. We say that P is weakly
visible from 7. The following theorem and lemma are basic to finding a visibility path. The
proof of the theorem is a direct generalization of the case when the visibility path is a line
segment. The proof of this special case can be found in Ke[8]. The problem of finding a
shortest visibility segment can be solved in linear time[3] improving the previously known
O(nlogn) time algorithm due to Ke[8].

Theorem 1 Let © be a polygonal path inside a simple polygon P. Then, © is a visibility
path for P if and only if it intersects all the regions P(w) of nonredundant windows w inside

P.

We will assume throughout that no three vertices in P are colinear. This assumption is
essential in order to guarantee a constant performance ratio.

Lemma 1 If no three vertices of P are colinear, then no line segment inside P intersects
with more than two independent windows.

Proof. Let L = ab be a line segment inside P that intersects with more than two independent
windows. Without loss of generality, we may assume that for some two independent windows
wy and wy that L intersects with, @ € P(wq) and b € P(ws). Let ws be another independent
window intersected by L. Since P(w1), P(wz) and P(ws) are pairwise disjoint, L cannot
intersect with the interior of P(ws). Moreover, if L Nws contains more than one point, then
we must have L C wjs since w3 is a chord in P. Consequently, L N w3 consists of exactly one
point, say c¢. It is not hard to see that the only possibility is that ¢ = Y(ws) and indeed a
reflex vertex of P. But this implies that ¢ and the endpoints of the edge generating w3 are
colinear.

Corollary 1 Let H C W be any independent set of windows. Then any window w € W
intersects with at most two windows in H.



Corollary 2 Let M C W be a maximum independent set of windows. Then the link-length
of any optimal visibility path 7 is at least |M| — 1.

Proof. By Theorem 1, = must intersect all members of M. By Lemma 1, at least one line
segment is needed in order for 7= to go from one window in M to the next.

The idea of finding an approximate minimum-link visibility path inside P consists of com-
puting a set of points, which we will call special points. These points have the property that
if a polygonal path 7 passes through all of them then, as will be shown later, it is a visibility
path. In Section 3 we show how to compute a set S of special points. In Section 4, we give
the approximation algorithm for computing an approximate visibility path.

3 Construction of the special points

The following procedure constructs a maximum independent set of windows. It is essentially
the same as that given in [9]. The proof that this algorithm does produce an independent set
of maximum cardinality is similar to that of finding a maximum independent set of circular-
arcs, given in [9, 10] and is omitted. Pick an arbitrary window w and let it be numbered w;.
Recall that the endpoints of a window w; are X (w;) and Y(w;). Assume that the endpoints
are sorted in counterclockwise direction. The endpoint of a window w visited the first time
as we scan them in this direction is designated as X'(w). Let neat be a function from W to
itself such that next(w;) = w;, where X' (w;) lies after Y(w;), and between Y(w;) and X (w;)
there exists no endpoint, X (wy) for any k.

1. Let w = wy and set M+« {w}.
2. Set w'«—next(w).

3. While v’ # w and w’' Nw = do the following;:
Set M—M U{w'}; w'—next(w').

4. If w’ = w then halt.
5. Set M—M —{w} U {w'}.
6. Set w—next(w); w'—next(w') and go to Step 3.

The above procedure finds a set of independent windows in a greedy manner. It will terminate
when function next maps the set of windows in M to itself. Note that when all windows
intersect, Yw € W, next(w) = w’ for some w' € W, and M consists of exactly one window,
i.e., {w'}. It is not hard to see that the time taken by this procedure is O(n) as w is reassigned
in Step 6 at most n times, and w’ never bypasses w as they move in the counterclockwise
direction.

An important property of a maximum independent set of windows M = {wy, ws, ..., w;}
constructed in this way is the following, whose proof is omitted.



Lemma 2 Let M = {wy,wy,...,wr} be a mazximum independent set constructed in the
greedy algorithm. Then for any w € W — M there is a window w' € M such that X (w) lies
in the open interval defined by (X (w'), Y(w')).

Let w € W— M. Then w intersects some w; € M,1 <i < k =|M]|. By Corollary 1 there are
three possibilities depending on whether w intersects w;_; or w; 1 or neither (see Figure 1(a)
through (c)). Note that wy = wy, and wiy1 = wy. The case in Figure 1(d) cannot happen
(Lemma 2). In this figure, the boundary of P is represented by a circle.
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Figure 1: Possibilities of intersections of a window w with other windows in a maximum
independent set.

Now, we partition W — M into k groups as follows.
Wi={weW-M|X(w)e Plw)}, 1 <i<k.

Figure 2 provides an example of this grouping. In this figure, a« € Wy, b,c € Wy and d € Ws.
Similarly, all four windows originating from within P(w;) belong to W,.

Finally, we define a set S = {p1,pa,...,px} of k special points, where p; = Y(w;), for
w; € M,1 <1 < k. The intention is that these points will be the vertices of the visibility
path to be constructed (see Figure 2 for example). The set S thus constructed will be referred
to as the set of special points associated with the maximum independent set of windows M.

Note that, as implied by Corollary 2, the length of any optimal visibility path = is at least
k—1.

Theorem 2 Let w be a polygonal path that visits all the special points computed as described
above. Then 7w is a visibility path.



Figure 2: An example of a set of special points in a simple polygon with respect to a
maximum independent set of windows (boldlines).

Proof. By Theorem 1, it suffices to show that for any window w € W — M there is a special
point p € S such that p € P(w). Let w € W, , where W;,1 < ¢ < k, is a window group as
explained in the construction. By construction, X'(w) € P(w;). This implies that p; is to
the right of w, i.e., p; € P(w). Note that P(w) of each window w € W — M contains exactly
one special point.

4 Construction of an approximate minimum-link vis-
ibility path

Given a simple polygon P, the following algorithm computes an approximate minimum-link
visibility path « for P.

1. Compute the set of nonredundant windows W of P.
2. Sort the endpoints in W in counterclockwise order.

3. Compute a maximum independent set of windows M = {wy, ws, ..., w;} and its associ-
ated set of special points S = {p1, p2,...,pr} as described in Section 3. It is important
to use such a construction so as to ensure that Lemma 2 holds.

4. Find 7;;, a polygonal path of minimum link-length between each pair of windows
wi,w; € M.

5. Let GG be the complete graph whose node set is M; to each edge of (¢ assign a (positive
integer) cost equal to the link distance between the corresponding windows.



6. Construct a minimum cost spanning tree T for the graph . Convert T" into an Eulerian
graph G’ by doubling its edges. Starting from a leaf node of T" construct a tour ¢ that
visits all the nodes in M and bypasses all previously visited nodes. This is exactly
the well-known approximation algorithm for the geometric traveling salesman problem
(GTSP). Convert ¢ into a Hamiltonian path p = v;,,v,,...,v;, by removing an edge
in ¢ (of maximum cost, say).

7. Let w;,,w,, ..., w;, be the corresponding sequence of windows. Rename the windows
in this sequence as wy,wq, ..., wi. Let II = 7y, m23,...Tk—1 4. Il is the sequence of
polygonal paths corresponding to the sequence of edges in p.

8. Convert II into a connected polygonal path = as follows. For each window w;, 2 <
t < k —1, let the two polygonal paths m;_;; and 7; ;41 intersect w; at points u; and v;
respectively. Insert the two line segments u;p;, and p;v; into the sequence II. Also,
add the two line segments pruy and wgrpr to the beginning and end of the sequence,
where uy and wuy, are the intersections of wy and wy with 7 3 and 7;_q 4 respect Let 7
be the resulting polygonal path

pP1uy, 1,2, U2P2, P2U2, T2 3, U3P3, P3V3 . . . Tk—2.k—1 Uk—1Pk—1, Pk—1Vk—1, Tk—1,k, Uk, Pk-
7 is the desired path.

Lemma 3 Let 7 be constructed as described in the algorithm above. Then |rx| < 4|7'|, where
7' is any optimal path.

Proof. Using an analysis similar to that of the well-known approximation algorithm for the
GTSP, and noting that link-distances obey the triangle inequality, it is easy to see that

o = > Imigl <27

i € 11

By Corollary 2, |7'| > k — 1, and since exactly 2k — 2 line segments have been added to the
sequence of polygonal paths, we have

7| = [II|+ 2k — 2 < 2|'| + 2k — 2 < 47|.

The time complexity of the above algorithm is computed as follows. Step 1 takes O(n)
time[4]. Step 2 takes O(nlogn) time. Step 3 takes O(n) time[9]. Step 4 takes O(kn)[5, 6, 12],
where k = |M|. By Corollary 2, k < m, where m is the link-length of an optimal path. Hence,
the time taken by this step is O(mn). The cost of building the complete graph G in Step 5
is O(k?). The total time required by Step 6 is dominated by that of finding a minimum cost
spanning tree, i.e., O(k*) = O(m?). Finally, the time taken by Steps 7 and 8 is O(n). Hence,
the overall time taken by the algorithm is max{m? mn} = O(n?).

In[7], it is shown that Christofides’ heuristic can be modified so that it applies to paths as
well. It is not hard to see that modifying Step 6 accordingly results in a performance ratio



of 3.5. In this case, the running time becomes max{m?® mn} = O(n®). To obtain a tour
instead of a path, we need not remove any edges of the tour ¢ constructed in Step 6 of the
algorithm. This proves the following theorem.

Theorem 3 Let P be a simple polygon, in which no three vertices are colinear. It is always
possible to construct a watchman path (tour) whose link-length is no more than 4 times that
of an optimal watchman path (tour) in time max{m? mn} = O(n?), where m is the length
of an optimal path (tour). In time max{m® mn} = O(n®), the performance ratio can be
improved to 3.5.
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