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ABSTRACT We show that it is NP-hard to find a polygonal path π with a minimum number
of turns inside a simple polygon P such that every point of P is visible from at least one point
on π. In proving this main result, we show two other related problems to be NP-hard as well.
Specifically, given a set S of points (edges) in P , the problems of finding a tour with a minimum
number of turns that visits each point (edge) in S exactly once are also shown to be NP-hard. An
approximation algorithm that finds a suboptimal path with the number of turns no greater than 3
times that of an optimal solution is also presented.

1 Introduction

In optimization problems, the objective is usually to seek an optimum value based on some prede-
fined criteria and subject to a given set of constraints. One of the criteria often used in computa-
tional geometry is Euclidean distance, e.g., finding the shortest distance between two given points
in the plane[10]. Recently, a new measure called the link-distance, has been proposed and studied
first by Suri [18, 19]. Given two points x and y in the plane, and assuming the existence of some
obstacles between them, the link-length of a path π connecting these two points, denoted by |π|, is
simply the number of line segments in this path. The link-distance between x and y is the minimum
link-length over all possible paths between x and y. This measure is of course meaningful only if the
path is composed of straight line segments. Equivalently, the link-length and link-distance may be
expressed in terms of the number of turns in a given path. The link-distance appears to be of great
importance in robotics and communications systems where straight line motion or communication
is relatively inexpensive but “turns” are costly. Consider for example Figure 1 in which a robot is
to be launched from point x1 to x8. It is easy to show, using the triangle inequality, that the path
π = (x1, x2, . . . , x8) is shorter than π′ = (x1, x9, x8). However, π contains six turns, while π′ has
only one turn which is more desirable if we take into account the considerable amount of time it
will take the robot to make a single turn. More examples of the importance of this measure are
found in the literature[14, 16, 17].

Many algorithms structured around the notion of link-distance have been devised to parallel
those designed using the Euclidean distance. In [18], Suri gave a linear time algorithm for computing
the shortest link-distance between two points inside a triangulated simple polygon. The link-center
problem, which is defined as the locus of all points inside a simple polygon from which the link-
distance to all other points is minimized, was solved by Lenhart et al in O(n2) time[11]. Recently,
its time complexity was improved to O(nlogn) by Djidjev et al[3] Also, some visibility problems
can be regarded as link-path problems such as finding the region visible from a given point[4] or
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the set of points that are visible from all other points inside a given polygon[9], and the problem
of finding the shortest line segment inside a simple polygon from which all the other points inside
the polygon are visible[6]. On the other hand, some combinatorial problems, but not many, in
computational geometry have been shown to be intractable, such as the art gallery problem which
asks for the minimum number of positions required to see a simple polygonal area[8, 17] and the
p-center problem which asks for the minimum number of unit circles that can cover n points in the
plane[12].

In this paper, we investigate a variation of a class of problems pioneered by Chin and Ntafos[1, 2].
In [1, 2] ,they considered the problem of finding a route of minimum Euclidean length inside a
polygon with the property that every point in the polygon is visible from at least one point along
the route. They have shown that this problem is NP-hard for polygons with holes and for simple
polyhedra using a simple reduction of the geometric traveling salesman problem to it. They have
also presented an O(n log log n) algorithm for finding optimum routes in simple rectilinear polygons.
For other related watchman route problems see [7, 15, 13]. In this paper, we consider the same
optimization problem when the Euclidean metric is replaced with the link-distance measure.

Given a polygon P , call a line segment L inside P with the property that each point inside P

is visible from at least one point on L a visibility line segment. Similarly, call a polygonal path
π with the same property a visibility path. The link-diameter of P is defined to be the maximum
link-distance between any two points inside P . It is obvious that if there exists a visibility line
segment L inside P , then the link-diameter of P cannot exceed 3. This is because a path π with
|π| ≤ 3 between any two points x and y inside P can always be constructed by simply finding
two other points x′ and y′ on L visible from x and y respectively, and then letting π be the path
(x, x′, y′, y). Thus, if the link-diameter of P exceeds 3, then it is impossible to find a visibility line
segment L inside P . In general, if the link-diameter of P is larger than k + 2 and k ≥ 1, then a
visibility path π with |π| ≤ k cannot exist. As we will show, for a given parameter k the problem of
deciding if a visibility path π exists with |π| ≤ k is NP-hard even if the link diameter is known to be
less than k + 2. In proving this main result, we show two other related problems to be intractable
as well. These problems are summarized below:

Tour on a Set of Points. Given a polygonal area P and a set of points S on the boundary of P ,
no three of which are collinear, find a polygonal path inside P that visits each point in S exactly
once and has a minimum number of turns.
Tour on a Set of Edges. Given a polygonal area P and a subset S of its edges, find a polygonal
path inside P that visits each edge in S exactly once and has a minimum number of turns.
Visibility Path inside a Polygon. Given a polygonal area P , find a polygonal path π with a
minimum number of turns inside P such that every point of P is visible from at least one point on
π.

Throughout, we will work on the decision problems corresponding to these optimization prob-
lems. This is since a decision problem being NP-complete or NP-hard implies that its optimization
version is NP-hard. This paper is organized as follows. Section 2 contains some preliminary defini-
tions and conventions. Sections 3, 4 and 5 are devoted respectively to the proofs of NP-completeness
or NP-hardness of the three aforementioned problems. In Section 6 an approximation algorithm is
presented. Finally, Section 7 concludes with some discussion and remarks.
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2 Definitions and Notations

A polygonal path π is a sequence of n points (v1, v2, . . . , vn), called vertices, joined by n line segments
v1v2, v2v3, . . . , vn−1vn, called edges. A polygonal path is called simple if no two nonconsecutive edges
intersect. A polygon P of n vertices or n-gon is a polygonal path π of n vertices (v1, v2, . . . , vn),
such that the last vertex vn is connected to the first vertex v1 by an edge vnv1, and P is simple
if no two nonconsecutive edges intersect. Throughout, we will be interested in simple polygons
only, and hence the qualifier “simple” will be dropped. The boundary of P denotes the closed, and
connected simple path defined by the sequence of the vertices. P will also denote the closed, finite,
and connected region of the plane enclosed by the boundary of P . Given two points x ∈ P, y ∈ P ,
x is said to be visible from y, or x sees y if and only if the line segment joining them lies entirely
within P . If S is a set of points in P , x ∈ P , we will define the function V (x, S) to be the set of
points in S visible from x, i.e., V (x, S) = {y|y ∈ S and y is visible from x}.

A link path, or simply a path, π between two points x1 and xk in a polygon P is a polygonal
path (x1, x2, . . . , xk) inside P such that xi−1 and xi, 1 < i ≤ k, are visible. Given such a path, we
will call x1 its starting point, xk its end point, all other xi’s, 2 ≤ i ≤ k − 1, its turns.

Given a set of points S in P , a tour τ on S is a link path that visits each point in S exactly
once, i.e., if y ∈ S, then y is a vertex in τ . A subtour τ ′ on S is simply a tour on S′, where S′ ⊂ S.
If τ is a tour on S, τ ′ a subtour on S, then for convenience, we will make use of the set notation
and write τ ′ ⊆ τ to mean that τ visits all points visited by τ ′. Also, if L is a line segment in τ ,
then we write L ∈ τ .

Let τ = (x1, x2, . . . , xk) be a tour defined on a set S. By definition, τ must visit all the points
in S. It may happen that {x1, x2, . . . , xk} = S, i.e., τ makes turns only at the points x2, . . . , xk−1.
On the other hand, τ may make extra turns at points not in S. In this case, there is at least one
vertex of τ that is not in S. For this purpose, we will define the cost of a tour τ , written cost(τ), to
be the number of extra turns in τ , i.e., cost(τ) = j if and only if |τ | − |S|+ 1 = j. Finally, given a
tour τ on a set S, τ will be called a valid tour if and only if cost(τ) = 0, otherwise τ will be called
invalid. Figure 2 shows an example of an invalid tour on {s, x1, x2, x3, x4, t}. The cost of this tour
is 3 since there are three extra turns made at points y1, y2 and y3.

3 Tour on a Set of Points

In this section we concern ourselves with the complexity of the problem of finding a tour on a set
of points, abbreviated TSP. First, we consider a variant of TSP, which we will call TSP′ in which
the tour on the set of points is restricted to start and end at two distinguished points s, t ∈ S. It
is trivial to show that TSP′ can be solved in polynomial time using a nondeterministic program
which in polynomial time can guess a tour and verify its cost. To show that TSP′ is NP-complete,
we will reduce the exact three cover problem, abbreviated X3C, to it. Following the conventions
in [5], we first rephrase TSP and TSP′ as decision problems and state the exact three cover problem.

Tour on a Set of Points (TSP)
INSTANCE: A polygon P with n vertices, a nonempty set S of points on the boundary of P no
three of which are collinear, and an integer c, 0 ≤ c ≤ n. An instance of TSP will be represented
by the 3-tuple (P, S, c).
QUESTION: Does there exist a tour τ inside P on S with the property that cost(τ) ≤ c?
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Restricted version of Tour on a Set of Points (TSP′)
INSTANCE: A polygon P with n vertices, a nonempty set S of points on the boundary of P no
three of which are collinear, two points s, t ∈ S, and an integer c, 0 ≤ c ≤ n. An instance of TSP′

will be represented by the 5-tuple (P, S, s, t, c).
QUESTION: Does there exist a tour τ inside P on S that starts at s and ends at t with the
property that cost(τ) ≤ c?

Exact Three Cover(X3C)
INSTANCE: A set X = {1, 2, . . . , 3n} and a collection F = {F1, F2, . . . , Fp} of 3-element subsets
of X. An instance of X3C will be represented by the 2-tuple (X,F).
QUESTION: Does F contain an exact cover for X, i.e., a subcollection F ′ ⊆ F such that every
element of X occurs in exactly one member of F ′?

3.1 The reduction

Given an instance I = (X,F) of X3C, we construct an instance I ′ = (P, S, s, t, 0) of TSP′ such that
the answer to I is yes if and only if the answer to I ′ is yes. In other words, in the constructed
polygon, there is a valid tour on S if and only if X has an exact cover in F . The constructed
polygon will be composed of the following constructs (refer to the final construction in Figure 5).
In these constructs, all joints and vertices of set elements constitute the set S.

1) The top middle joints (TMJ′s). Those are just points on the top boundary of the polygon,
separated by notches so that no two of them see each other, i.e., they are pairwise invisible.
There are 3n + 1 top middle joints; the first 3n, TMJ1,TMJ2, . . . ,TMJ3n correspond respec-
tively to the elements in X = {1, 2, . . . , 3n}. The last one, TMJ3n+1 is added for the sake of
the construction.

2) The top left joints (TLJ′s) and top right joints (TRJ′s). They are similar to the middle joints.
Their total number is p, where p = |F|. The right joints are numbered TRJ1,TRJ3, . . . , i.e.,
odd-numbered, and the left joints are numbered TLJ2,TLJ4, . . . , i.e., even-numbered. All
the top joints combined, left, right and middle, are pairwise invisible from each other, except
TMJ3n+1 and TRJ1 since there is no notch between them.

3) The set elements (SE′s). This construct is the heart of the construction. If Ft = {i, j, k} ∈
F , 1 ≤ t ≤ p, is an input set in the X3C, then there is one set element for each one of i, j and
k. A set element that corresponds to the element i in set Ft will be denoted by SEt,i. Figure
3.a shows the construction of the set element SEt,i. In Figure 3.b, the vertex visibility graph
Gt,i associated with SEt,i is depicted. For each vertex in SEt,i there is a corresponding node in
Gt,i, and there is an edge between two nodes in Gt,i if and only if their corresponding vertices
in SEt,i are visible from each other. The existence of a valid subtour inside a set element is
tantamount to finding a Hamiltonian path that visits all nodes in its corresponding visibility
graph. This implies that if a tour τ is to be valid, its part which visits the vertices in a
set element must correspond to a Hamiltonian path in its corresponding visibility graph that
starts at 1 and ends at 13 or starts at 5 and ends at 9. In other words, the following two
conditions must be satisfied within each set element:

a) τ must either enter at 1 and exit at 13 or enter at 5 and exit at 9.
b) Once τ enters the figure of SEt,i, it must visit all the vertices before exiting. In other

words, τ cannot enter, visit some of the vertices and come back later without making
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extra turns. For this reason, in what follows, we will write τ visits SEt,i to mean “τ

enters SEt,i, visits all the 13 vertices inside, and then exits.”

4) The set constructs (SETC′s). In the final construction, there are p set constructs SETC1,
SETC2, . . . ,SETCp corresponding to the p sets F1, F2, . . . , Fp in the input to X3C. Figure
4 shows SETCt, the set construct representation of Ft = {i, j, k} with i < j < k. In this
construct, three set elements for i, j and k, namely SEt,i,SEt,j and SEt,k, are grouped together.
Also, there are two joints: the left set joint, LSJt, and the right set joint, RSJt. This
representation has the property that if a tour τ is to be valid, then either one of the following
two situations must happen:

a) ∀x ∈ {i, j, k}, τ visits TMJx,SEt,x,TMJx+1 in this order.

b) τ visits the following in order: LSJt,SEt,k, SEt,j ,SEt,i,RSJt.

Figure 5 shows the final construction. In the bottom, we concatenate p set constructs, one for each
set in F , the input to X3C. At the top, we draw the top joints, left, middle and right. The dotted
lines in Figure 5 are visibility lines. The intention of this construction is the following (refer to
Figure 5). We start at the point TMJ1, go to one of the set element representations of 1, i.e., any
SEt,1, then we go to TMJ2, branch to one of the set elements of 2, i.e., any SEt,2, etc. Finally we
get to TMJ3n+1. We go from there to TRJ1, then LSJ1, the left set joint in SETC1. At this point
we have the following three cases:

1) If all the set elements in SETC1 have been connected to top middle joints, then we just go
directly to RSJ1.

2) If none of the set elements in SETC1, which corresponds to F1 = {i, j, k} ∈ F , have been
connected to top middle joints, then we visit the following in order: SE1,k, SE1,j ,SE1,i,RSJ1.

3) If some of the set elements have been connected to top middle joints but not all of them, then
there is no possibility to visit them all without making extra turns. Consequently, a valid
tour is impossible in this case. This happens if X does not have an exact cover in F .

At this point we are at RSJ1. From there we branch to the first top left joint, TLJ2, and
from there we go to the right joint in the second set construct, RSJ2, and so on.

Figure 6 shows the construction of an instance of TSP′ from the X3C instance: X={1, 2, 3, 4,
5, 6} and F={{1, 3, 4}, {1, 3, 5}, {2, 5, 6}}. In this figure, points TMJ1 and RSJ3 are the
starting and end points respectively. Obviously, the input to X3C has an exact cover, and hence
in the constructed polygon, there is a valid tour from TMJ1 to RSJ3. It can easily be checked that
the following tour is valid: (TMJ1, SE1,1, TMJ2,SE3,2,TMJ3,SE1,3, TMJ4,SE1,4,TMJ5,SE3,5,
TMJ6,SE3,6,TMJ7,TRJ1,LSJ1, RSJ1,TLJ2,RSJ2, SE2,1,SE2,3, SE2,5, LSJ2,TRJ3, LSJ3,RSJ3).

3.2 Proof of NP-completeness

Lemma 1 If τ is valid, then within each set element SEt,i, we must have

a) (1, 2, 3, 4, 5) ⊆ τ .

b) (9, 10, 11, 12, 13) ⊆ τ .

c) (6, 7, 8) ⊆ τ .
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d) 1 and 13 cannot be consecutive in τ .

e) Either (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13) ⊆ τ or (5, 4, 3, 2, 1, 8, 7, 6, 13, 12, 11, 10, 9) ⊆ τ .

Proof: The proof of this lemma follows directly from the necessity of the existence of a Hamiltonian
path in each Gt,i:

a) This is because deg(2) = deg(4) = 2, where deg(i) denotes the number of edges incident on
vertex i and 3 is connected to both 2 and 4.

b) This is symmetrical to part a.

c) This is because deg(7) = 2 with 6 and 8 being its neighbors.

d) If so, then by parts a and b (9, 10, 11, 12, 13, 1, 2, 3, 4, 5) ⊆ τ . But part c above cannot be
satisfied if τ is to be valid.

e) Applying parts a, b, c and d to the vertex visibility graph in Figure 3.b results in some
of its edges being not qualified to be part of a Hamiltonian path. Figure 7 shows the re-
maining edges that may be part of the tour. If 1 is visited first, 6 must be visited after 5
for τ to be valid. Thus, by part c and symmetry, (1, 2, ..., 13) ⊆ τ . On the other hand,
if 5 is visited first, 8 must be visited after 1 and hence, by part c and symmetry again,
(5, 4, 3, 2, 1, 8, 7, 6, 13, 12, 11, 10, 9) ⊆ τ . �

Consider any set element in the final construction, say SEt,i. The only point in S outside SEt,i

visible from vertex 5 is TMJi. Similarly, the only point in S outside SEt,i visible from vertex 9
is TMJi+1. Therefore, if the vertices within SEt,i are visited in the order 5, . . . , 9,we must have
(TMJi, 5, 4, 3, 2, 1, 8, 7, 6, 13, 12, 11, 10, 9,TMJi+1) ⊆ τ . This corresponds in X3C to pairing i ∈ X

to i ∈ F for some F ∈ F . For convenience, we will say in this case that SEt,i is “full with respect
to τ” or just “full”. If τ is valid, then the only other possibility, as stated in the lemma is that
SEt,i is entered at 1 and exited at 13, i.e., (14, 1, 2, . . . , 13, 15) ⊆ τ . In this case, we will say that
SEt,i is “empty with respect to τ” or just “empty”. Also, we will say that a set construct SETCt

is “full with respect to τ” or just “full” if all of its set elements SEt,i,SEt,j and SEt,k are full, and
“empty with respect to τ” or just “empty” if they are all empty.

Lemma 2 If τ is valid, then

a) ∀i, 1 ≤ i ≤ 3n, TMJi is connected to SEt,i for some t, 1 ≤ t ≤ p.

b) ∀t, 1 ≤ t ≤ p, SETCt is either full with respect to τ or empty with respect to τ .

Proof:

a) This follows from the fact that the first 3n middle joints can only see points inside the set
elements. Specifically, TMJ1 can only see vertex 5 inside some SEt,1 and TMJi, 2 ≤ i ≤ 3n,
can only see vertex 5 in SEu,i and vertex 9 in SEv,i−1, where t, u and v are such that 1 ∈
Ft, i ∈ Fu and i − 1 ∈ Fv in the input to X3C.

b) Let SEt,l, SEt,m and SEt,r be respectively the left, middle and right set elements inside SETCt.
It suffices to show that if one of them is empty, then the other two must both be empty. So,
assume that the middle set element, SEt,m is empty. Since SEt,m is empty, it must be entered
at vertex 1 and exited at vertex 13. But since outside SEt,m,the only point in S visible from
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1 is vertex 13 of SEt,l, it must be the case that the last vertex visited in SEt,l is 13, i.e., it is
empty with respect to τ . Similarly, the first vertex visited in SEt,r is 1, which means it must
also be empty. This means if the middle set element is empty, both the other set elements
must also be empty for τ to be a valid tour. The same reasoning applies if we start from the
assumption that the left set element or the right set element is empty. It follows that either
all the set elements inside SETCt are full or empty, i.e., SETCt is either full or empty. �

Lemma 3 If τ is valid, then there are exactly n set constructs which are full with respect to τ .

Proof: By Lemma 2.a, we must have 3n set elements which are full with respect to τ . By Lemma
2.b, each set construct is either full or empty. As a result, there are exactly 3n/3 = n full set
constructs. �

Theorem 1 TSP′ is NP-complete.

Proof: TSP′ is in NP as we can nondeterministically guess a tour τ by giving the sequence of
vertices of S visited by τ , and verify its cost in polynominal time. Given an instance I = (X,F)
of X3C, it is easy to construct an instance I ′ = (P, S, s, t, 0) of TSP′ in polynomial time where
s = TMJ1 and t = LSJp if p is even and RSJp if p is odd. It is important to note that the
coordinates of the constructed polygon are rational numbers with polynomial size. This follows
from the fact that no more than a constant number of additions and line intersections are needed
to compute these coordinates. Now, we will show that the answer to I is yes if and only if the
answer to I ′ is yes. In other words, in the constructed polygon, there is a valid tour if and only
if X has an exact cover in F . Suppose that the answer to I is yes. Then there is an exact cover,
i.e., there are n 3-element subsets which cover the 3n elements. A valid tour in the constructed
polygon can easily be constructed with exactly n full set constructs as explained in Section 3.1.
On the other hand, suppose in the constructed polygon we have cost( τ) = 0. Then, by Lemma 3,
there are exactly n set constructs which are full with respect to τ . But each TMJi, 1 ≤ i ≤ 3n, can
be connected only to one of the set elements. It follows that the n full set constructs correspond
to an exact cover for the instance I. �

Theorem 2 TSP is NP-complete.

Proof: As in the previous theorem, it is not difficult to see that TSP is in NP. Given an instance
I ′ = (P ′, S′, s′, t′, c′) of TSP′, we construct another instance I = (P, S, c′ + 2n) of TSP such that
the answer to I ′ is yes if and only if the answer to I is yes. As shown in Figures 8.a and 8.b, P

is identical to P ′ except for the addition of two polygonal narrow strips of n turns each, where n

is the number of edges in P ′. Also, two more points u and v are added, one at the end of each
strip. Thus, we have S = S′ ∪ {u, v}. It is obvious that a tour on S with cost ≤ c′ + 2n must have
vertices u and v as its start and end points respectively, for otherwise the cost of the tour would
be at least 3n in order to visit both u and v. Therefore the answer to I ′ is yes, i.e., there is a tour
τ ′ inside P ′ on S′ of length ≤ c′ if and only if there is a tour τ = (u, s, . . . , t, v) inside P on S of
length ≤ c′ + 2n, i.e., the answer to I is yes. �

4 Tour on a Set of Edges

In this section we consider the second problem, TSE. First, we rephrase it as a decision problem
and then we show that it is NP-hard by reducing TSP to it.
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INSTANCE: A polygon P with n vertices, a nonempty subset S = {e1, e2, . . . , ek} of edges of P

and an integer c, 0 ≤ c ≤ n. An instance of TSE will be represented by the 3-tuple (P, S, c).
QUESTION: Does there exist a tour τ on the set of edges S inside P with the property that
cost(τ) ≤ c?

The idea of the reduction is simple. We replace each point x to be visited in the input to TSP

by an edge e = xx′ in the input to TSE. This replacement is such that any tour on the set of edges
can be forced to visit e at one of its endpoints, namely x, without increasing its length (note that
it is sufficient to visit an edge at one of its endpoints). This is detailed in the proof of the following
theorem.

Definition 1 Let x be a point and e = yy′ an edge on the boundary of a simple polygon such that
x and y are mutually visible. We define the relation V is(x, e) as follows: if y is not the only point
on e visible from x, then all points on e are visible from x. In other words, either y is the only
point on e visible from x or all points on e are visible fron x. In the degenerate case in which e is
a point, say y, V is(x, y) will simply mean that x and y are visible from each other.

Theorem 3 TSE is NP-hard.

Proof: Given an instance I = (P, S, c) of TSP , we construct another instance I ′ = (P ′, S′, c)
of TSE such that for each point x ∈ S, there is a corresponding edge ex = xx′ ∈ S′ called the
replacement edge of x. The construction of P ′ is such that if ex is the replacement edge of x ∈ S,
then any tour that visits ex can be forced to visit it at point x without increasing its length. It
follows that if τ ′ is a tour on S′ of length k, another tour τ on S of length k can easily be constructed
by visiting the points in S in the order their replacement edges are visited in τ ′. For simplicity, we
will assume that no three points in S plus the vertices of P are collinear since the existence of such
triplets will only complicate the proof. In order to find the replacement edge ex for a point x ∈ S,
we first find a replacement line segment Lx on the boundary of P such that for any two points x and
y in S, V is(x, y) if and only if V is(x, Ly) and V is(y, Lx). The construction of replacement edges
from replacement line segments is then accomplished by replacing each one of these line segments
by a two-edge small outward notch. The calculation of the set of replacement line segments, which
we will denote by S, is carried out through the following three refinement stages.

a) Let x ∈ S be a point on the boundary of P with its two adjacnt vertices u and v where u

precedes v in a clockwise ordering of the vertices of P . If x is not a vertex of P , we will
“pretend” that it is a vertex with � uxv = π. This stage simply assigns an initial replacemnt
line segment Lx = xx′, where x′ is the midpoint of vx.

b) In this stage, the replacement line segments calculated in stage a are “refined” by reducing
their lengths, if necessary, to limit their visibility ranges so that at the end of this stage
∀x, y ∈ S V is(x, y) if and only if V is(x, Ly) and V is(y, Lx). In order to achieve this, we
consider each ordered pair Lx and Ly(x �= y) of replacement edges. That is, Lx is tested
against Ly and Ly is tested against Lx in two different steps. Let Lx and Ly(x �= y) be the
current (ordered) pair being considered. We have the following possibilities (refer to Figure
9).

• if V is(x, y) and x is the only point on Lx visible from y, then we leave Lx unchanged.
In Figure 9.a, Lp is not changed after testing it against Lr and Ls.
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• If V is(x, y) and x is not the only point on Lx visible from y, then we let z be a farthest
point from x on Lx (i.e., between x and x′) such that V is(y, xz) and let x′ be the
midpoint of xz. In Figure 9.a, when testing Ls against Lt, we have V is(s, t) and s is
not the only point on Ls visible from t. Therefore, the length of Ls is reduced so that it
becomes all visible from point t as shown in Figure 9.b. Note that z (in this stage and
the next stage below) always exists since we have assumed in the outset that no three
points in S plus the vertices of P are collinear.

• If not V is(x, y), but part of Lx is visible from some point on Ly, then we let z be a
farthest point from x on Lx such that no point on line segment xz is visible from any
point on Ly and let x′ be the midpoint of xz. In Figure 9.b, when testing Lr against Ls,
r and s are not visible from each other while Lr and Ls are weakly visible. Therefore,
the length of Lr is reduced so that no point on it is visible from any point on Ls as
shown in Figure 9.c.

It is not hard to see that at the end of this stage, the members of S must satisfy the following
property:

Property 1 Let xx′ and yy′ be two replacement line segments in S. Then, V is(x, y) if and
only if V is(x, Ly) and V is(y, Lx).

Therefore, if x′′y′′ is a line segment in a tour τ that visits Lx = xx′ and Ly = yy′ at points
x′′ ∈ Lx and y′′ inLy, where x′′ is different from x, then it is always possible to replace x′′ by
x without increasing the length of τ .

c) At this point, there might exist two points px and py on two replacement line segments Lx

and Ly respectively, such that the link-distance between px and py (that is greater than 1) is
shorter than the link-distance betweeen x and y. For instance, in Figure 9.c, the link-distance
between q and t is greater than the link distance between their respective line segments. In
order to avoid this situation, we outline one more refinement stage which is basically the
naive version of the algorithm of Suri to find the link distance between two points inside a
simple polygon [18]. We do this refinement for each replacement line segment. So, assume
we want to refine the position of point x′, an end point of the replacement line segment Lx.
For each y ∈ S − x, we do the following. We first find V (y) which is the region visible
from point y. We note that at this time, after stages a and b have been completed, either
x is inside V (y) or not. If it is, then we leave Lx unchanged. Otherwise there must exist a
window w1 that is an edge of V (y) and intersects any path from y to x. We calculate V (w1)
and continue, if necessary, finding the visibility polygons of the unique sequence of successive
windows intersectig any path from y to x, and checking the inclusion of x and/or x′ inside
these visibility polygons and stoppping at the first window wi for which the test of inclusion
is successful. Once wi is found, we proceed as in stage b to update x′,if necessary, so that
if x /∈ V (wi) then x′ /∈ V (wi) .We ensure this condition by simply reducing the length of Lx

if necessary. In Figure 9.c, t′ ∈ V (w) but t is not. Hence, t′ is updated accordingly. This is
done by letting z be the intersection of Lt and V (wi) and modifying t′ to be the midpoint of
tz (see Figure 9.d).

To finish the construction, we compute the replacement edges from these replacement line
segments as follows. Let εv denote the smallest distance from any vertex v to the polygonal path
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Πv, which is the boundary of P with the two edges incident on v removed. Let ε = minv∈P εv.
Consider expanding the boundary of P by a distance ε/3. The resulting closed curve P consisting of
straight line segments and circular-arcs is not self-intersecting. This curve will be used to calculate
the lengths of replacement edges.

For each point x ∈ S, let Vx be the angular bisector of angle � uxv that intersects P at point
x′′. Replace Lx = xx′ by the two line segments, x′x′′ and x′′x. Here, x′′x serves as the replacement
edge of x.

The following property whose proof is a consequence of the construction of the edge xx′′ is
important:

Property 2 Let xx′′ and yy′′ be two replacement edges in P ′ of x, y ∈ S obtained as described
above. If px is any point on xx′′ and py is any point on yy′′, then the link distance between x and
y is not greater than the link distance between px and Py.

It remains to show that a solution to I ′ is a solution to I. Obviously, if the answer to I ′ is no,
then the answer to I is also no. So, let the answer to the instance I ′ = (P ′, S′, c) be yes. Then
there exists a tour τ ′ on S′ with |τ ′| ≤ c. We construct another tour τ from τ ′. τ visits the edges in
S′ in the order they are visited by τ ′. The only difference between the two is that if x ∈ S, e = xx′′

and τ ′ visits e at a point z different from x, then we let τ visit e at x. Property 2 guarantees
that this is always possible.It follows that |τ | ≤ |τ ′|, i.e, τ is a tour on S with |τ | ≤ c. To finish
the proof, we note that the transformation of P to P ′ requires no more than a polynomial number
of finding the visibility polygons from a point or an edge plus some arithmetic operations and line
intersections. �

5 Visibility Path inside a Polygon

In this section we consider the third problem, VPP. First, we prove that a special case of TSE
which we will call TSE′ to be NP-hard. We have chosen to work on TSE′ because it is much easier
to reduce it to our final problem, VPP. For convenience, let us call an edge connecting two vertices
x and y restricted whenever one of x or y is convex in P . In TSE′, a set of restricted edges are to
be connected together by polygonal paths.

TSE′:
INSTANCE: A polygon P with n vertices, a subset S = {e1, e2, . . . , ek} of restricted edges of P

and an integer c, 0 ≤ c ≤ n. An instance of TSE′ will be represented by the 3-tuple (P, S, c).
QUESTION: Does there exist c or less line segments that connect the set of restricted edges
together? (see below).

VPP:
INSTANCE: A polygon P with n vertices and an integer c, 0 ≤ c ≤ n. An instance of VPP will
be represented by the 2-tuple (P, c).
QUESTION: Does there exist a visibility polygonal path π inside P with |π| ≤ c ?

Note the major change in the objective of TSE′. Here, we are interested in finding the number
of line segments that are used to connect those input edges of P . Two edges ei and ej are connected
by a polygonal path πij if this path starts at one edge and ends at the other one. Moreover, if πjk

connects ej and ek, then πij and πjk do not have to intersect edge ej at the same point. Edges
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e1, e2, . . . , and em are connected if, for 1 < j < m, ej is connected to both ej−1 and ej+1. For
example, In Figure 10.a, 7 line segments are used to connect the edges e1, e2, . . . , e5. Another
important remark is the possibility for one line segment in a visibility path to be contained in
another one. In Figure 10.b, the line segment x4x5 is part of x3x4. Consequently, the length of
this path is 5; i.e., the vertex x4 is a turn and not an endpoint. This is in accordance with the
practical implication of a visibility path used by a watchman to guard a given polygonal area. In
this example, the watchman travels the path in the order of its vertices; he goes from point x3 to
x4 and then goes along the same path back to x5.

Lemma 4 TSE′ is NP-hard.

Proof: The reduction from TSP to TSE is also a reduction from TSP to TSE′. �

5.1 The reduction

Given an instance I = (P, S, c) of TSE′, we construct another instance I ′ = (P ′, c + 2|S| − 2) of
VPP such that the answer to I is yes if and only if the answer to I ′ is yes. This construction is
detailed below. Before we describe the reduction, we need some definitions and notations. Let v

be any reflex vertex adjacent to another vertex u in a polygon P . Let H be the infinite half line
originating at u in the direction from u to v. Let x be the intersection of H and the boundary of
P closest to v. Then the line segment vx is called a window w and uv the edge generating w. If w

is a window generated by uv, then it partitions P into two parts and that part which contains u

will be called the region of w, denoted by P (w). If w1 and w2 are two windows such that P (w1)
is contained entirely within P (w2), then w2 will be called redundant, otherwise it is nonredundant.
The notion of redundant and nonredundant windows here is identical to that of the redundant and
nonredundant chords defined in [6, 18, 19]. The following fact is a generalization of a theorem in
[6] which says that a visibility line segment must intersect all the nonredundant windows in a given
polygon.

Fact 1 If π is a visibility path inside P , then π must intersect all the nonredundant windows in P .

Given P , we construct P ′ such that the number of nonredundant windows in P ′ = |S|. Also,
the construction is such that part of the visibility path inside P ′ which consists of c line segments
serves as a solution to I. P ′ will be obtained from P by applying a number of transformations on
P which are described in the following steps.

step 1. (refer to Figures 11.a and 11.b) Let e ∈ S be one of the input edges in P . If u and v are
its two endpoints then, since e is restricted by assumption, one of these two vertices, say v,
is convex. Replace e by the polygonal path v, a, b, c, d, f, u where:

a) The area defined by the simple polygon u, v, a, b, c, d, f lies entirely in the exterior of P
except for points on edge e. This can be ensured by following a procedure similar to the
one of replacing points by edges in the proof of Theorem 3.

b) The points u, v, a, d, c are collinear.

c) The lengths of the edges in this new construct is immaterial as long as the above two
conditions are satisfied.
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Let P0 be the resulting polygon (Figure 11.b). Throughout, we will refer to the added con-
struct v, a, b, c, d, f, u in place of e as subpolygon(e). In subpolygon(e) there is a nonredundant
window generated by edge cd connecting a and d. We will refer to this window as window(e).
For example, in Figure 11.b, window(uv) = w = ad and window(u′v′) = w′ = a′d′. For
brevity, we will call members of {window(e)|e ∈ S} desirable windows, and all other windows
undesirable. An important observation is that all desirable windows are nonredundant. Let
W be the set of nonredundant windows in P0. Obviously, |S| ≤ |W |. Note also that e in P

becomes a redundant window in P0.

step 2. This step consists of a series of transformations after the end of which, we obtain another
polygon P ′ having the property that its set of nonredundant edges is exactly S, the set of
desirable windows. First, we transform P0 to P1, then we transform P1 to P2 and so on until
we get to Pk = P ′ on which no more transformations can be done. In each iteration, we
choose a nonredundant window that is undesirable and make it redundant by removing some
part of the polygon. Let w = vx be a nonredundant but undesirable window in P generated
by the edge uv which is adjacent to the edge vy (see Figure 12.a). Let also T be the set of all
vertices together with all nonredundant windows’ endpoints on the boundary of Pi − P (W )
except x and v, the endpoints of w. Find a set T ′ ⊆ T of points visible from v and sort them
in ascending order of their polar angles around v with respect to w in the direction from x to
v. Find x′ ∈ T ′(if any) such that � xvx′ is minimum (break ties by choosing x′ to be closest
to v) and such that one of the following two conditions holds:

a) One desirable window becomes entirely inside the subpolygon defined by the closed polyg-
onal path v, u, . . . , x, . . . , x′, v. Note that there were no desirable windows inside this
region, for otherwise w would have not been nonredundant.

b) The direction of vx′ coincides with vy, the edge adjacent to uv. In this case, y is reflex,
for otherwise, case a would have been satisfied by another point x′′ with � xvx′′ < � xvx′.

Let u′ be a point on the boundary of P (w) that is closest to v on the extension of x′v in the
direction from x′ to v. Now, remove the region defined by the polygonal path (v, u, ..., u′),
which is a portion of the boundary of P (w), and the line segment vu′. Finally, update the set
of nonredundant windows. Figures 12 and 13 show examples of these two cases. In the first
case (Figure 12.b), the nonredundant window w is transformed into a redundant window,
w′ = vx′. In the second case w is removed, and the number of vertices in Pi is reduced.
Repeat this process as long as there is a nonredundant window which is undesirable.

5.2 Proof of NP-hardness

It is important to note that, if w is a nonredundant window, then it is always possible to find a point
x′ as defined in step 2 above so that either case a or b must occur in each iteration. Furthermore, the
series of transformations must terminate as the number of vertices and/or nonredundant windows of
the polygon is reduced by at least one in each iteration. This guarantees that the reduction always
results in a new polygon P ′ with no nonredundant windows except the desirable ones. Thus, we
have the following observation:

Observation 1 If I ′ = (P ′, c + 2|S| − 2) is an instance of VPP constructed from the instance
I = (P, S, c) of TSE′ as described above, then the set of nonredundant windows in P ′ is exactly
{window(e)|e ∈ S}.
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Lemma 5 For 0 ≤ i ≤ k−1, let Pi be transformed into Pi+1 as described in step 2 of the reduction.
Then there exists a path inside Pi of length ≤ c that visits each and every desirable window of Pi if
and only if there exists a path inside Pi+1 of length ≤ c that visits each and every desirable window
of Pi+1.

Proof: We first prove the lemma for case a in step 2 of the reduction. Consider Figure 14.a
in which u′, u, v, x, x′ and the windows w and w′ are shown. Let π be a path inside Pi of length
≤ c that visits each and every desirable window of Pi. First, we may assume that π is optimal,
i.e., it consists of a minimum number of line segments. We show here that region R defined by the
boundary of Pi between v and u′ and the line segment vu′ need not be visited by π. Note that π

starts and ends inside Pi −P (w) which contains all the desirable windows. As a result, if π crosses
w at all, then the number of its intersection points with w is even (see Figure 14.a). Let us assume
also that π makes only two intersection points with w since working with more than two is just a
reiteration of the proof.

Suppose that region R must be visited in order to achieve optimality. Then π must visit R

at some point,say s. Let the two turns before and after s be p and q respectively. Obviously, p

and q are not visible from each other and therefore there must exist a (reflex) vertex, say t, on the
boundary of Pi between x and x′. Moreover, the portion of Pi defined by the closed polygonal path
v, u, . . . , x, . . . , t, v must contain a desirable window (see Figure 14.b). But � xvt < � xvx′. This
means that t should have been chosen in step 2, not x′.

As to case b, there are no desirable windows to the left of w′ and hence, by a similar argument,
region R need not be visited by π.�

Lemma 6 The elements of S can be connected by c line segments or less if and only if there exists
a visibility path π inside P ′ with |π| ≤ c + 2|S| − 2.

Proof: Let I = (P, S, c) be an instance of TSE′ and I ′ = (P ′, c + 2|S| − 2) an instance of VPP
where P ′ is obtained from P using the reduction described in the previous section. Let W be the
set of nonredundant windows in P ′ and N = {e|e ∈ S}, a set of some of the redundant windows
in P ′. By Fact1 above, W = {window(e)|e ∈ N} and any path inside P ′ is a visibility path if and
only if it visits all of the windows in W .

Suppose that π is a visibility path inside P ′ such that |π| ≤ c + 2|S| − 2. Suppose also that π

intersects one of the elements of N , say uv, at points that are not vertices (turns) of π (see Figure
15.a). π must make exactly two turns inside subpolygon(uv), x and z in this Figure. Intuitively, π

can easily be changed in this region such that its two turns are forced to lie on e (x′ and z′ in Figure
15.b) without increasing its length (recall that, according to the definition of a visibility path, y in
Figure 15.b is a turn and not an endpoint of π). The same reasoning applies if π intersects e ∈ N at
only one point; this happens if y in Figure 15.a is an endpoint of π. Thus, we may assume without
loss of generality that π intersects all windows in N at its vertices only. Now, it is easy to pick c line
segments in π that serve to connect all edges in S, i.e., a solution to I. This is simply achieved by
removing all portions of π that lie inside the |N | regions defined by {subpolygon(e)|e ∈ N}. Figure
15.c shows the region subpolygon(uv) shown in Figure 15.b after removing the two line segments
x′y and z′y. Note that in this case, 2|N | − 2 = 2|S| − 2 line segments are removed from π (π starts
and ends at two of the nonredundant windows in W ).

On the other hand, if it is possible to connect all the elements of S inside P using ≤ c line
segments, then reversing the outlined procedure above in the obvious way, we can add exactly
2|N |−2 = 2|S|−2 line segments inside P ′ in order to build a visibility path of length ≤ c+2|S|−2.
�
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Lemma 7 The construction of P ′ from P is achievable in polynomial time.

Proof:
First, we show that the number of iterations in step 2 of the reduction is O(n). As pointed out

earlier, after each iteration, the number of vertices is reduced by at least one if case b happens.
If case a happens, then a nonredundant window is transformed into a redundant one and it will
stay redundant for the rest of the transformation since its region will contain a desirable window.
However, in this case, a redundant window may become nonredundant. Thus, the number of
transformations in step 2 is bounded above by the number of nonredundant (that are undesirable)
windows plus the redundant ones which is O(n). To finish the proof, we note here as in the proofs
of Theorems 1 and 3, assuming that the coordinates of the input polygon are rational numbers,
that the calculations of the constructed polygon’s vertices are done with a constant number of
line intersections and additions, so they are rational numbers with polynomial size. Since the
construction time is polynomial, the entire transformation is achieved in polynomial time.�

Theorem 4 VPP is NP-hard.

Proof: Given an instance I of TSE′, we have shown how to transform it into another instance I ′

of VPP above. Lemma 4 shows that TSE′ is NP-hard, Lemma 7 shows that this transformation
can be done in polynomial time, and Lemmas 5 and 6 establish its correctness. �

6 Finding an approximate solution for the visibility path problem

In the following, we describe a simple heuristic to find an approximate visibility path inside a given
polygon P . The heart of this heuristic is based on a well known algorithm to find an approximate
solution of a given instance of the traveling salesman problem and on the idea of visibility windows
introduced by Suri [18, 19]. The first step is to compute all the set of windows which takes O(n log n)
time in the worst case. Figure 16 shows a polygon P with its set of windows. The next step is
to remove all the redundant windows and keep only the nonredundant ones in linear time [18, 19].
Figure 17 shows only the nonredundant windows.

Let w1, w2, . . . , wk be k nonredundant windows with the property that P (w1) ∩ P (w2) ∩ . . . ∩
P (wk) = Q is not empty. If k = 1 (e.g. w6 in Figure 17) then remove Q from P to get another
polygon P ′ = P −Q. Otherwise, Q is a subpolygon of P of the form vi, vi+1, . . . , vj , u1, u2, . . . , uk−1,
where vi, vi+1, . . . , vj is part of the boundary of P and u1, u2, . . . , uk−1 is an inward convex polygonal
path inside P defined by the intersections of w1, w2, . . . , wk. In Figure 17 above, Q is the subpolygon
v1, v2, v3, v4, v5, u1, u2. It can be shown that vi and vj are visible from each other, or in other words,
the line segment connecting vi and vj lies entirely inside P . Now, replace the polygonal path
vi, vi+1, . . . , vj , which is part of the polygon boundary by a new edge vivj in P ′. If we repeat this
process until all the nonredundant windows are exhausted, then we have as a result a polygon, say
P ′′, in which each edge is either an edge in P , a nonredundant window in P or an edge introduced
by removing a convex polygonal path as described above. In the latter two cases, we will call such
edges special edges. Finding all the special edges can be accomplished in O(n2) time. Figure 18
shows P ′′ which resulted from applying this process to the polygon in Figure 17. Those special
edges which were nonredundant windows must be visited by any visibility path, while it is sufficient,
but not necessary, to visit those induced by the convex polygonal paths. Thus, if a path visits all
the edges, then it is a visibility path. Consequently, finding a visibility path reduces to finding a
polygonal path inside P ′′ that intersects all the special edges in P ′′. We proceed to find such a
path as follows:
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1. Find Π(ei, ej), a polygonal path of minimum link-length between each pair of special edges
ei and ej in P ′′.

2. Build a complete graph G = (V, E, C) with:
V = the set of special edges ei in P ′′.
E = {di,j |ei and ej are special edges in P ′′} and
C = {ci,j = link-length of Π(ei, ej) = link-distance between ei and ej }.

3. Find a minimum spanning tree T of G and convert it into a directed graph D by replacing
each edge by a two-edge directed cycle. D is an Eulerian circuit.

4. Starting from a leaf node ei0 of T , traverse the edges of D so as to convert the directed circuit
into a path (ei0 , ei1 , . . . , eik) skipping nodes that have been visited before. Let Seq(ei0 , eik)
denote the sequence of edges resulting from concatenating the polygonal paths Π(ei0 , ei1),
Π(ei1 , ei2), . . . , Π(eik−1

, eik).

5. If for some j,Π(eij−1 , eij ) and Π(eij , eij+1) are two polygonal paths in Seq(ei0 , eik) that inter-
sect the special edge eij at two different points x and y, then insert the line segment xy into
Seq(ei0 , eik) between Π(eij−1 , eij ) and Π(eij , eij+1). So, this portion of Seq(ei0 , eik) is updated
to be (. . . ,Π(eij−1 , eij ), xy,Π(eij , eij+1), . . .).

Let π, the approximate visibility polygonal path, be Seq(ei0 , eik) resulting from step 5. Since the
link-distance measure obeys the triangle inequality, the total link-length of T obtained in step 3
cannot exceed the link-length of an optimal visibility path. Thus, the path resulting from step 4
cannot exceed twice the link-length of an optimal visibility path. The number of line segments, if
any, that are added in step 5 is at most the number of special edges to be visited minus two, which
is at most the link-length of an optimal path minus 3. Consequently, the link-length of π is strictly
less than 3 times the link-length of an optimal path. This performance ratio can be reduced to 2.5
by simply employing the modified heuristic of the Traveling Salesman Problem in [5] which has the
performance ratio 1.5. The time complexity of this heuristic is dominated by step 1, computing
the Π(ei,j)′s, which takes O(n3 log n) time.

Given a simple polygon P , let OPT(P ) denote the length of an optimal visibility path inside
P and APPROX(P ) the length of an approximate visibility path obtained using the heuristic
procedure outlined above. We have in essence proved the following theorem.

Theorem 5 For all simple polygons P with n vertices, a suboptimal visibility path π can be obtained
in O(n3 log n) time such that its link length APPROX(P ) < 3× OPT(P ).

7 Conclusion

We have shown that the problem of finding a polygonal path of minimum number of turns inside
a given simple polygon such that the entire polygon is visible from at least one point on the path
is NP-hard. As a by-product, we have also shown that given n points (edges) on the boundary
of a simple polygon, the problem of finding a tour that visits each and every point (edge) exactly
once such that the tour has a minimum number of links is NP-complete (NP-hard). We have also
presented an approximation algorithm that finds a suboptimal path with the number of turns no
greater than 3 times that of the optimal solution in O(n3 log n) time, where n is the number of
vertices of the given polygon. Although the problem of deciding if there exists a polygonal path
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with k turns, for arbitrary k is NP-hard, the problem of deciding if such a path exists for a fixed
k remains open. Furthermore, we pose the problem of identifing a class of polygons for which a
visibility line segment (k = 1) exists. A characterization would generalize the class of polygons,
known as star-shaped polygons, for which a visibility point or kernel exists.
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