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1. Introduction

Given a set S of n points on the boundary of a Simple
Polygon P, we are concerned with the problem of
finding a Hamiltonian path on S (i.e., a path that visits
each point in § exactly once) of minimum Euclidean
length. We present an O(#n*) time algorithm that finds
n — 1 optimal Hamiltonian paths from a fixed source
point to each other point in S. Hence, by repeating this
algorithm n — 1 times, a Hamiltonian path of minimum
Euclidean length with no fixed endpoints can be found
in time O(n*). The algorithm presented works for any
simply connected region provided that the inter-point
distances are part of the input. In [1], Alsuwaiyel
and Lee have shown that this problem is NP-complete
if the Euclidean distance is replaced with the link-
distance metric?.

Given a simple polygon P, a watchman route for
P is a route within P with the property that every
point in P is visible from at least one point along
the route. The problem of finding a watchman route
of shortest total length is fundamental in computa-
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2 The link-distance between two points x and y in a simple
polygon P is defined to be the minimum number of line segments
in a polygonal path contained in P that connects x and y.

tional geometry. This problem has first been inves-
tigated by Chin and Ntafos who gave a linear time
algorithm for the special case when P is rectilinear
[3]. In the case of general simple polygons, an al-
gorithm that runs in O(n?) time was given in [2].
But the problem of finding a watchman path of min-
imum Euclidean length inside a simple polygon is
still open. In general, to find such a path or a tour,
the problem reduces to finding a set of convex chains
on the boundary of the given input polygon which
have to be intersected by a (polygonal) path of short-
est length [1-3]. It is not obvious whether the al-
gorithm presented here can be generalized to visiting
a set of convex chains, instead of points, and thus
proving that the problem of finding a shortest watch-
man path is indeed solvable in polynomial time. It
is not even obvious in the case of rectilinear poly-
gons in which the chains degenerate into line seg-
ments.

2. The algorithm

Let S = {ag,ai,...,a,—1} be a set of n points on
the boundary of a simple polygon P sorted in coun-
terclockwise order. In what follows, we give an algo-
rithm that finds » — 1 paths 7, m2,...,7,~1, where
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Fig. 1. Partitioning the set of points.

each path 7y, 1 < k < n— 1, is a Hamiltonian path of
shortest Euclidean length that starts at the designated
source point ag and ends at point a;.

Consider computing a Hamiltonian path 7; of
shortest length from ap to ay, and assume without
loss of generality that the line passing through ag and
ay is horizontal, Partition the set of points S into two
sequences: an upper sequence U = ap_1,8n2,. .-,
and a lower sequence L = ap,ai,...,ax—1 (see
Fig. 1). We say that portions of ; overlap or, equiv-
alently, 7 intersects itself if, when tracing the path
from ag to ai, a point p € my is encountered more
than once. It is not difficult to see that if 7r; intersects
itself, then it can be transformed into another path
ar}, that is not self-intersecting and of strictly shorter
length. As a consequence, we have the following
lemma.

Lemma 1. Let 7, be a Hamiltonian path of short-
est length that starts at point ay and ends at point
ay. Then, m must visit the points a1, aa, . . ., ag-1 in
this order, and the points a1, an—2, . . ., Qk41 in this
order.

It follows that 7r; oscillates between the upper and
lower sequences, visiting the points in each sequence
as described in Lemma 1. Suppose that, at some in-
stant, an object that is traversing path 7r; is at point
a; in the upper sequence, say, after it has already vis-
ited @y, an-2,...,aj-1 and ag,ay, ..., a; in the up-
per and lower sequences respectively, where 0 < i <
k < j < n— 1. Then, by Lemma 1, the next point to
be visited by this object must be either a; or aji1.
This implies the following approach to compute 7y,
1<ks<n—-1.

With each point a4, 1 < k& € n — 1, we as-
sociate k subpaths IT§, IT%, ..., IT%_,, where each
IT;‘ is a Hamiltonian path of shortest length from
ap to ay that visits the points a,_1,ap—2,. .., k1
and aj,as,...,a; For each pair k and j, 0 < j <
k < n—1,let A% denote the length of 11%. Thus,
me = I, and A%_, is the length of ;. In what
follows, we will let A* denote the array with the k
entries Ak, A%, ... Ak

The arrays A 1<k<g<n—1,are computed in the
order

An—] An—2 A]
For each pair i and j, 0 < i < j < n— 1, define
DU =diiy1 +digriv2+ -+ dj,

where d; ; denotes the length of the shortest geodesic
path from g; to a;.

We proceed to compute the arrays A" !, A"72, .. .,
A! inductively as follows:

Ay =don-ts

AV =Dg 1 +di gt

A '=Dos+dopot,s ...,
AT, =Dop_2+dn2n1.

Fork=n—2,n-3,...,1, A*is computed from A%+
using the following equations:

A§=AET + digr i
A¥ =min{AX + diyr g + diw AT+ dini i}

At =min{AK*" + diy11 + D12 + dog,
A b dp 0+ dop, ASTY + disr i)

Af =min{A§™" + diy1,1 + D1 + dik
AP +dipig+ Do+ djs -
AP +diirinr + Dy + djks s
AF + dirads
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Ak 1 —mln{AkH + di+1,1 + Dk,
All‘+ +dit12+Dogy -.ns
A Y diy i+ Divig -
AR+ dia)

The computation of the actual paths is postponed
after all the A* arrays have been computed in order to
avoid an O(n?) storage (O(n) for each subpath 7).
For this purpose, we associate with each array entry
A¥ the index of the “split point” BY of the subpath /7%
defined as follows: If in the computation of
Af=min{A§"" + diy11 + Dy + djs

A]]H—l +dii12+ Dy + dig, ..o
AR dy i+ Dirj+dig -
A dy )

the quantity
A 4 diy i+ D+ djk

minimizes Af for some i, 0 < i < J, then we set the
split point Bf = 1.

After all arrays A"~!, A"~2, ..., A have been com-
puted, their corresponding actual paths are constructed

using the following recurrence:

ap,ai,...,a;,a; ifk=n—1,
s I+ ay ifij:jandkgn—z,
J Hg,,l,aBk+1

1ka<]andk - 2.

It is not hard to see that each path 77 ]" is constructed
in O(n) time and O(n) space. The correctness of the
algorithm follows from the following lemma.

Lemma 2. The paths II}‘, 0<j<k<gn—-1,
as computed by the algorithm above are of shortest
length.

Proof. By induction on k. Obviously, II3~' =
ag, a1, and by Lemma 1, the only shortest Hamil-
tonian path from ag to a,_; that visits the points
a,az,...,a; is ag,a1,a,...,a;,a,_1, for each j,
1 < j € n—2. Assume that for some k, 1 < k <
n—2,and forall j, 0 < j <k, Af“ is minimized by

the algorithm. We show that each A%, 0 < j < k—1,

is also minimized by the algorithm. Clearly, A% =
AO+1 + di+1 4 is of minimum length. By construction,

forany j, 1 <j<k—1, Hf is the concatenation of
the two subpaths

k+1
Hi and k41> Aig1,Qit2, ..« A, A,

where i = BY, the split point of /7¥. By induction,
17{chl is a path of shortest length from ag to ay, that

visits the points

Qn_1,Qp-3,...,0r41 and ay,ay,...,a;,

and, by Lemma 1, ag41,ai41,ais2,. .., aj, a is the
unique optimal path from a;.| to a; that visits the
points aiy1,ai12,...,a;. Since the algorithm selects
i that minimizes the sum of the lengths of these two
subpaths, it follows that 77 jk must be of shortest length
as well. [

We analyze the time and space required by the al-
gorithm as follows. First, the inter-point distances can
be computed in O( n?) time [4]. Since the number of
operations required to compute A" is O(j), the total
cost of computing A* is Z O(j) = O(k?). Hence,
the total time needed to compute all A*s is O(n?). As
noted before, the amount of time needed to construct
all k Hamiltonian paths, if needed, is O(n?). It follows
that the overall time taken by the algorithm is o(n?).

Since each array A* consists of k entries, the amount
of space needed to store these arrays is O(n?). Simi-
larly, an amount of O(n?) is needed to store the val-
ues of D;;, 0 < i < j € n— 1. The amount of
space needed to compute and store the actual paths, if
needed, is O(n?). It follows that the total amount of
space needed by the algorithm is O(#?).

Finally, to find a Hamiltonian path 7 of minimum
total length that visits all the points in § with no re-
striction on its endpoints, we only need to repeat the
above procedure n — 1 times, once for each starting
point (one point need not be considered as a source).
It follows that the overall time complexity to find 7,
an optimal Hamiltonian path that connects all points
in §, is O(n*). The following theorem summarizes the
main result.

Theorem 3. Given aset S of n points on the boundary
of a simple polygon, it is possible to find n — 1 Hamil-
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tonian paths my,ma, . .., Ty—1 from a source vertex to
every other vertex in O(n®) time and O(n?) space.
Thus, a Hamiltonian path of shortest length that vis-
its all the points in S can be computed in O(n*) time
and O(n?) space.

Proof. Direct from Lemma 2 and the analysis of time
and space complexities above. [
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