
ELSEVIER Information processing Letters 59 ( 1996) 207-210 

Information 
Processing 
Letters 

Finding a shortest Hamiltonian path inside a simple polygon 
Muhammad H. Alsuwaiyel ’ 

Department of Information and Computer Science, King Fahd University of Petroleum and Minerals, 
Dhahran 31261, Saudi Arabia 

Received 1 February 1995; revised 1 June 1996 

Communicated by S.G. Akl 

1. Introduction 

Given a set S of n points on the boundary of a Simple 
Polygon P, we are concerned with the problem of 
finding a Hamiltonian path on S (i.e., a path that visits 
each point in S exactly once) of minimum Euclidean 
length. We present an 0( n3) time algorithm that finds 
n - 1 optimal Hamiltonian paths from a fixed source 
point to each other point in S. Hence, by repeating this 
algorithm n - 1 times, a Hamiltonian path of minimum 

Euclidean length with no fixed endpoints can be found 
in time 0( n4). The algorithm presented works for any 
simply connected region provided that the inter-point 
distances are part of the input. In [ 11, Alsuwaiyel 
and Lee have shown that this problem is NP-complete 
if the Euclidean distance is replaced with the link- 
distance metric 2 . 

Given a simple polygon P, a watchman route for 
P is a route within P with the property that every 

point in P is visible from at least one point along 
the route. The problem of finding a watchman route 

of shortest total length is fundamental in computa- 
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*The link-distance between two points x and y in a simple 
polygon P is defined to be the minimum number of line segments 

in a polygonal path contained in P that connects x and y. 

tional geometry. This problem has first been inves- 
tigated by Chin and Ntafos who gave a linear time 
algorithm for the special case when P is rectilinear 
[ 31. In the case of general simple polygons, an al- 
gorithm that runs in 0(n3) time was given in [ 21. 
But the problem of finding a watchman path of min- 
imum Euclidean length inside a simple polygon is 
still open. In general, to find such a path or a tour, 
the problem reduces to finding a set of convex chains 

on the boundary of the given input polygon which 
have to be intersected by a (polygonal) path of short- 
est length [l-3]. It is not obvious whether the al- 
gorithm presented here can be generalized to visiting 
a set of convex chains, instead of points, and thus 
proving that the problem of finding a shortest watch- 
man path is indeed solvable in polynomial time. It 

is not even obvious in the case of rectilinear poly- 
gons in which the chains degenerate into line seg- 
ments. 

2. The algorithm 

LetS={a~,a~,... ,a,_,} be a set of n points on 
the boundary of a simple polygon P sorted in coun- 
terclockwise order. In what follows, we give an algo- 
rithm that finds n - 1 paths ~t,7~2,. . . , ~~-1, where 
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Fig. 1. Partitioning the set of points. 

each path ??-k, 1 < k < n - 1, is a Hamiltonian path of 
shortest Euclidean length that starts at the designated 

source point ~10 and ends at point ak. 
Consider computing a Hamiltonian path rk of 

shortest length from a0 to ak, and assume without 
loss of generality that the line passing through a0 and 
ak is horizontal. Partition the set of points s into two 
sequences: an upper sequence u = a,_], an_2, . . . , ak 
and a lower sequence L = ao, al, . . . , a&] (see 
Fig. 1) . We say that portions of nk overlap or, equiv- 
alently, rk intersects itself if, when tracing the path 
from a0 to ak, a point p E 7Tk is encountered more 
than once. It is not difficult to see that if rk intersects 
itself, then it can be transformed into another path 
n-L that is not self-intersecting and of strictly shorter 

length. As a consequence, we have the following 
lemma. 

Lemma 1. Let rk be a Hamiltonian path of short- 

est length that starts at point a~ and ends at point 
ak. Then, rk must visit the points a], a2,. , . , a&] in 
this order, and the points a,,-], an-z, . . . , ak+] in this 

order. 

It follows that rk oscillates between the upper and 
lower sequences, visiting the points in each sequence 

as described in Lemma 1. Suppose that, at some in- 
stant, an object that is traversing path rk is at point 
aj in the upper sequence, say, after it has already vis- 
ited a,- I, an-x,. . . , aj_1 and ae, al,. . . , ai in the up- 
per and lower sequences respectively, where 0 < i < 
k < j < n - 1. Then, by Lemma 1, the next point to 
be visited by this object must be either ai+] or aj+]. 
This implies the following approach to compute ‘n-k, 
l<k<n-1. 

With each point ak, 1 < k < n - 1, we as- 
sociate k subpaths II;, nf, . . . , I7f_,, where each 
I$ is a Hamiltonian path of shortest length from 

a0 to ak that visits the points an_l,an-2,. . . , ak+] 
and al,az,. . . ,aj. For each pair k and j, 0 6 j < 
k 6 n - 1, let A; denote the length of $. Thus, 

?rk = n,k_, and A:_, is the length of rk. In what 

follows, we will let Ak denote the array with the k 
entries Ai, A:, . . . , A:_,. 

The arrays Ak, 1 < k < n - 1, are computed in the 
order 

A”-], An-2 ) . . . . A’. 

Foreachpairiandj,O<i<j<n-l,define 

Di,j = di,i+] + di+],i+2 +. . ’ + dj-l,jT 

where di,j denotes the length of the shortest geodesic 

path from ai to a,. 
We proceed to compute the arrays A”-‘, Ane2,. . . , 

A’ inductively as follows: 

A;-’ =do,,_,, 

Al-’ =Do,l + dl,,,-1, 

A;-‘=Do,2+d2,n_,, . . . . 

A::; = Do,,,-2 + dn-z,n-1. 

Fork=n-2,n-3,..., 1, Ak is computed from Ak+] 

using the following equations: 

A; = A?’ i- dk+l.k, 

Af=min{@' +dk+l,l +dl,k,A:+' + dk+l,k}, 

A2k=min{&+' + dk+l,l + 01.2 + d2,k, 

Af+' + dkfl.2 + d2.h A?’ + dk+l,k}, 

Aik =min{@’ •b &+],I + Dl,j + dj,k, 

A:“+dk+I,2+D~,j+dj,k, . . . . 

AF+’ +dk+l,i+l + Di+l,j + dj,k, . . . , 

Ajk+’ + dk+u}, 
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Ai-, =min{Ap’ + &+1,1 + Dl,k, 

A:+’ + dk+1,2 + Dz,k, . . . , 

At+’ + dk+l.i+l + Di+l,k, . . * * 

Aif: + dk+l,k}. 

The computation of the actual paths is postponed 

after all the Ak arrays have been computed in order to 

avoid an 0(n3 ) storage (O(n) for each subpath flj). 
For this purpose, we associate with each array entry 
Al the index of the “split point” BF of the subpath nf 
defined as follows: If in the computation of 

Al =min{Ap’ + dk+l,l + D1.j + dj,k, 

A?’ f dk+1,2 + D2,j + dj,k, . . .t 

A!+* + dk+l,i+l + Di+l,j + dj,k, . . ., 

Ajk+’ + dk+l,k} 

the quantity 

A:+’ + dk+l,i+l + Di+l,j f dj,k 

minimizes A! for some i, 0 < i < j, then we set the 

split point Bj = i. 

After all arrays A”-‘, Anp2, . . . , Al have been com- 

puted, their corresponding actual paths are constructed 
using the following recurrence: 

( ao,ai,...,aj,ak ifk=n- 1, 

ak ifB;=jandk<n-2, 

It is not hard to see that each path DF is constructed 
in O(n) time and O(n) space. The correctness of the 
algorithm follows from the following lemma. 

Lemma2. ThepathsI$,O<j<k<n-1, 
as computed by the algorithm above are of shortest 

length. 

Proof. By induction on k. Obviously, Z70”-’ = 
ao, an-l, and by Lemma 1, the only shortest Hamil- 
tonian path from a0 to a,_1 that visits the points 

al,a2,.... aj is ao,al,az,. . . ,aj,a,_l, for each j, 
1 < j < n - 2. Assume that for some k, 1 6 k < 

n - 2, and for all j, 0 < j < k, Arf’ is minimized by 

the algorithm. We show that each A;, 0 < j < k - 1, 

is also minimized by the algorithm. Clearly, A[ = 

A?’ $ dk+l,k is of minimum length. By construction, 
for any j, 1 < j < k - 1, nf is the concatenation of 
the two subpaths 

nk+’ 1 and ak+i,ai+l,ai+z,...,aj,ak, 

where i = Bf, the split point of I$. By induction, 

fl,$‘l is a path of shortest length from aa to ak+l that 
visits the points 

an-ltan-2,...,ak+l and al,a:! ,..., ai, 

and, by Lemma 1, ak+l,ai+l,ai+2,. . . ,aj,ak is the 
unique optimal path from ak+l to ak that visits the 
points &+I, Ui+2,. . . ,aj. Since the algorithm selects 
i that minimizes the sum of the lengths of these two 
subpaths, it follows that flj must be of shortest length 
as well. 0 

We analyze the time and space required by the al- 
gorithm as follows. First, the inter-point distances can 
be computed in 0( n2) time [ 41. Since the number of 
operations required to compute A: is O(j), the total 

cost of computing Ak is C&’ O(j) = 0( k2). Hence, 
the total time needed to compute all Aks is 0( n3). As 
noted before, the amount of time needed to construct 

all k Hamiltonian paths, if needed, is 0( n2). It follows 
that the overall time taken by the algorithm is 0( n3). 

Since each array Ak consists of k entries, the amount 
of space needed to store these arrays is 0( n2). Simi- 
larly, an amount of O(n2> is needed to store the val- 
ues of Di,j, 0 < i < j < n - 1. The amount of 
space needed to compute and store the actual paths, if 
needed, is O(n2). It follows that the total amount of 

space needed by the algorithm is 0( n2). 

Finally, to find a Hamiltonian path 7~ of minimum 
total length that visits all the points in S with no re- 
striction on its endpoints, we only need to repeat the 
above procedure n - 1 times, once for each starting 
point (one point need not be considered as a source). 
It follows that the overall time complexity to find rr, 
an optimal Hamiltonian path that connects all points 

in S, is O( n4). The following theorem summarizes the 
main result. 

Theorem 3. Given a set S of npoints on the boundary 
of a simple polygon, it is possible to find n - 1 Hamil- 
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tonian paths 7~1, ~2, . . . , 7rn_l from a source vertex to 

every other vertex in 0(n3) time and O(n2) space. 

Thus, a Hamiltonianpath of shortest length that vis- 

its all the points in S can be computed in 0( n4) time 

and 0( n2) space. 

Proof. Direct from Lemma 2 and the analysis of time 
and space complexities above. Cl 
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