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The d-dimensional k-ary hypercube tree Tk(d) is a generalization of the hypercube tree, also known
in the literature as the spanning binomial tree. We present some of its structural properties and inves-
tigate in detail its average distance. For instance, it is shown that the binary hypercube tree has the
anomaly of having two nodes in its centre as opposed to having one in hypercube trees of arity k > 2.
However, in all dimensions, the centre, centroid and median coincide. We show that its total distance

is σ(Tk(d)) = 2σ(Hk(d)) − (2/k)
(

kd

2

)
= dk2d − (d + 1)k2d−1 + kd−1, which is minimum. Conse-

quently, for d ≥ 2, its average distance is μ(Tk(d)) = (2d(k − 1)kd−1)/(kd − 1) − 2/k, whose limiting
value is 2. This answers a generalization of a conjecture of Dobrynin et al. [Wiener index of trees: Theory
and applications, Acta Appl. Math. 66 (2001), pp. 211–249] for the binary hypercube by the affirmative.

Keywords: hypercube tree; spanning binomial tree; average distance; total distance; Wiener index

2000 AMS Subject Classifications: 05C12; 05C05; 05C85; 90B18; 90B20

1. Introduction

Bhuyan and Agrawal [3] introduced the concept of a generalized hypercube in which ki nodes
are connected along the ith dimension for a total of �d−1

i=0 ki nodes. When k0 = k1 · · · = kd−1, it
is referred to as the k-ary generalized hypercube. A d-dimensional k-ary generalized hypercube,
denoted by Hk(d), is a generalization of the binary hypercube H2(d). It has n = kd nodes, where
each node is uniquely identified with the d-digit base-k number x1x2 · · · xd , xj ∈ {0, 1, . . . , k − 1}.
Two nodes are connected if they differ in exactly one base-k digit. Hence, the degree of each node
is (k − 1)d and there are a total of 1

2 (k − 1)dkd edges. Hk(d) has a recursive structure: if d = 1,
Hk(1) is simplyKk , the complete graph on k nodes, otherwiseHk(d) is constructed from k copies of
a (d − 1)-dimensional hypercube Hk(d − 1) by performing the product Kk × Hk(d − 1). Hence,

Hk(d) = Kk × Kk × · · · × Kk︸ ︷︷ ︸
d times

.
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The d-dimensional hypercube spanning tree (or hypercube tree for short) is obtained from the
d-dimensional binary hypercube by performing the breadth-first search (BFS) starting from
node 00 · · · 0. It is also referred to in the literature as the spanning binomial tree of the hyper-
cube [10,11]. Looking at the connection between the binary hypercube and its spanning tree, it
seems natural to generalize the arity of the latter, so that it corresponds to the k-ary hypercube
for k ≥ 2. For this purpose, for k ≥ 2 and d ≥ 1, we define the d-dimensional k-ary hypercube
tree rooted at node 00 · · · 0 (d zeros), which we will denote by Tk(d), as a rooted tree whose con-
struction is a generalization of that of the hypercube tree or spanning binomial tree. It turns out
that the k-ary hypercube tree enjoys some properties which can be thought of as generalizations
of those of the binary hypercube tree. One of the important properties that we will investigate in
this work is related to its total or average distance. We show that it has the least total (and hence
average) distance among all spanning trees of the k-ary hypercube.

Let G = (V , E) be a connected undirected graph on n nodes. For u, v ∈ V (G), the distance
between u and v, denoted by dG(u, v), is the length of a shortest path between u and v, where the
length of a path is defined as the number of edges along the path. For v ∈ V (G), the distance of
v, is defined as

dG(v) =
∑

u∈V (G)

dG(v, u).

The total distance and average distance of the graph G, denoted, respectively, by σ(G) and μ(G),
are defined as

σ(G) = 1

2

∑
v∈V (G)

dG(v) and μ(G) =
(

n

2

)−1

σ(G).

The average distance is one of the most important measures of the efficiency of an interconnection
network modelled by a graph. It may be a more effective measure of the average performance of
a network than its diameter, as it is an indicator of the expected travel time between two randomly
chosen points of the network. The total distance has been investigated by several authors (e.g. [13])
and also under different names, such as transmission [15], total routing cost [18], and Wiener
index [5,17], with the latter being the oldest and most common. The average distance has also
been investigated under the name mean distance [7]. The Wiener index σ(G) of a graph G was
originally introduced by Wiener [17], and has numerous applications in physical chemistry [9]. It
has been extensively studied (see [5] for an excellent survey and results).Applications of the binary
hypercube tree in broadcasting and personalized communication and in fault-tolerant computing
can be found in [1,6,10,11,14].

In [16], it is shown that the binary hypercube tree is a local optimum with respect to the 1-move
heuristic which, starting from a spanning tree T of the hypercube H2(d), attempts to improve
the average distance between pairs of nodes, by adding an edge e of H2(d) − T and removing
an edge e′ from the (unique) cycle created by e. In [2], it is shown that the hypercube tree has
the minimum total distance among all spanning trees. The work here pertaining to the average
distance of the k-ary generalized hypercube tree is essentially an extention/generalization of
that in [2]. Given a graph G, let r(G) = min{σ(T )/σ (G) | T is a spanning tree of G}. Dobrynin
et al. [5] conjectured that if T is of minimum total distance over all possible spanning trees of
H2(d), then

r(H2(d)) = 2

(
1 − 1

d

)
+ 1

d2d−1
∼ 2. (1)

Here, we answer by the affirmative a generalization of this conjecture for the case of k-ary
generalized hypercube.
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2260 M.H. Alsuwaiyel

2. Preliminaries

For J = 0, 1, . . . , k − 1, let JHk(d) denote the induced subgraph of Hk(d) on node set

{J b1b2 · · · bd−1 | bi ∈ {0, 1, . . . , k − 1}}.
That is, JHk(d), which we will refer to as the J -cube, is the subcube of Hk(d) with all node labels
starting with base-k digit J . For instance, the 0-cube is the induced subgraph of Hk(d) on node
set {0b1b2 · · · bd−1 | bi ∈ {0, 1, . . . , k − 1}}.

Let G be a connected undirected graph. The eccentricity of a node v ∈ V (G), denoted by
ecc(v), is the length of a longest of all shortest paths between v and every other node in G. The
maximum eccentricity is called the graph diameter. The minimum graph eccentricity is called the
graph radius. The centre C of a graph is the set of nodes of graph eccentricity equal to its radius
(also called the set of central points). A branch B of a tree T at a node v is a maximal subtree
containing v as a leaf. The weight of a branch B, denoted by bw(B), is the number of edges in
B. The branch weight of a node v, denoted by bw(v), is the maximum branch weight among all
branches at v. Equivalently, bw(v) is the maximum number of nodes in a connected component
of T − v. The centroid of a tree T is the set of nodes of T with the minimum branch weight. The
median M is defined as the set of nodes with minimum distance. The following theorem is due
to Jordan [12].

Theorem 1 If C is the centroid of a tree T of order n, then one of the following holds: (i)

C = {c} and bw(c) ≤ (n − 1)/2, (ii) C = {c0, c1} and bw(c0) = bw(c1) = n/2. In both cases,
if v ∈ V (T ) − C, then bw(v) ≥ n/2.

Zelinka [19] characterized the set of nodes with minimum distance in a tree.

Theorem 2 The set of nodes with minimum distance in a tree T is the centroid C of T .

By Theorem 2, the centroid C and the median M in a tree are identical [4].

3. The k-ary hypercube tree

For d = 1, 2, . . . , we define the d-dimensional k-ary hypercube tree rooted at node 00 · · · 0
(d zeros), which we denote by Tk(d), as a rooted tree whose set of nodes is V (Tk(d)) = V (Hk(d)),
and whose set of edges E(Tk(d)) is defined by the parent function p as follows. Let v ∈ V (Tk(d))

and hd
k (v) be the height of v in Tk(d), that is, the maximum number of edges from v to a leaf

node in the subtree rooted at v (so the height of the root is the height of the tree, and the height
of a leaf node is 0). If v is not the root, then its label has the form

xz 00 · · · 0︸ ︷︷ ︸
hd

k (v)

, where x ∈ {0, 1, . . . , k − 1}∗ and z ∈ {1, 2, . . . , k − 1}.

So, x is a (possibly empty) sequence of base-k digits and z is a nonzero base-k digit. The parent
of v in Tk(d), d > 0, is defined as

p

⎛
⎜⎝xz 00 · · · 0︸ ︷︷ ︸

hd
k (v)

⎞
⎟⎠ = x 00 · · · 0︸ ︷︷ ︸

hd
k (v)+1

. (2)
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Figure 1. Hypercube H4(2) and its corresponding rooted tree T4(2).

If v is the root, then p(v) is undefined. Henceforth, we will refer to the child–parent relationship
in Equation (2) as the k-ary hypercube tree property. Figure 1 shows hypercube H4(2) and its
corresponding rooted tree T4(2).

3.1 Construction of the k-ary hypercube tree

The k-ary hypercube tree Tk(d) can be constructed by performing ordinary BFS on Hk(d) starting
at node 00 · · · 0. However, using the BFS costs �(|E(Hk(d))|) = O(|V (Hk(d))| log |V (Hk(d))|)
operations, while direct construction using its definition costs only �(|V (Hk(d))|) operations. So,
a natural generalization of the known constructions of the spanning binomial tree is more efficient.
Here, we generalize and unify two simple construction methods [10,11]. To avoid repetitions, we
will set Tk(1) = K1,k−1, where K1,k−1 is the star graph on k nodes. Assume d ≥ 2. Then,

(a) Tk(d) is constructed by replacing each node v of Tk(1) with Tk(d − 1), and designating the
root of the tree replacing the root of Tk(1) as the root of Tk(d).

(b) Tk(d) is constructed from Tk(d − 1) by attaching (k − 1) leaf nodes to each node in Tk(d − 1).

In [16], the property stated in Theorem 3(iii) (Section 4) is used as a construction method for the
binary hypercube tree. Given two rooted trees T ′ and T ′′, let T ′ � T ′′ denote the tree T obtained
by replacing each node in T ′ by the tree T ′′, and designating the root of the tree replacing the root
of T ′ as the root of T . Then, construction methods (a) and (b) can be rewritten, respectively, as

Tk(d) = Tk(1) � Tk(d − 1) (3)

and

Tk(d) = Tk(d − 1) � Tk(1). (4)

Lemma 1 The operation � is associative.

Proof For i, j, l ≥ 1, let Tk(i), Tk(j) and Tk(l) be k-ary hypercube tree s of dimensions i, j and
l, respectively. By definition of the operation �,

(Tk(i) � Tk(j)) � Tk(l) = Tk(i + j) � Tk(l) = Tk(i + j + l),

and likewise,

Tk(i) � (Tk(j) � Tk(l)) = Tk(i) � Tk(j + l) = Tk(i + j + l).

Thus, � is associative. �
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2262 M.H. Alsuwaiyel

By Lemma 1, we have the following general definition of Tk(d). For d ≥ 2 and 1 ≤ j ≤ d − 1,

Tk(d) = Tk(j) � Tk(d − j). (5)

Consequently, for any d > 1,

Tk(d) = Tk(1) � Tk(1) � · · · Tk(1)︸ ︷︷ ︸
d times

.

The set of nodes of Tk(d) is

V (Tk(d)) = {uv|u = x1, x2, . . . , xj ∈ Tk(j), v = y1y2 · · · yd−j ∈ Tk(d − j)}, (6)

and its set of edges is

E(Tk(d)) = Ej ∪ Ed−j , (7)

where

Ej = {(u0d−j , v0d−j )|(u, v) ∈ E(Tk(j))}, (8)

and

Ed−j = {(wx, wy)|w ∈ V (Tk(j)) and (x, y) ∈ E(Tk(d − j))}. (9)

In other words, the set of edges in Tk(d) are the union of two sets: (1) Ej is the set of edges in
Tk(j) with their end nodes appended by d − j zeros, and (2) Ed−j consists of kj copies of the
set of edges in Tk(d − j), where the end nodes of the edges in each copy are prefixed by the label
of a node in Tk(j). So, Ed−j is the set of edges resulting from replacing each node of Tk(j) with
one copy of Tk(d − j).

Lemma 2 The graph obtained using Equation (5) is the d-dimensional k-ary hypercube tree.

Proof Let T = T ′ � T ′′, where T ′ and T ′′ are two k-ary hypercube tree s of dimensions j and
d − j , respectively, with 1 ≤ j < d . By Equation (6),

|V (Tk(d))| = kj × kd−j = kd,

and by Equations (7)–(9),

|E(T )| = |E(T ′)| + kj |E(T ′′)| = (kj − 1) + kj (kd−j − 1) = kd − 1.

Since T is connected, it follows that it is a spanning tree for Hk(d). So, it only remains to show
that T has the k-ary hypercube tree property. To this end, assume inductively that the k-ary
hypercube tree property is satisfied by both T ′ and T ′′. Let (u, v) be an edge of T , where u is the
parent of v. By Equation (6), u = w1x and v = w2y, where w1, w2 ∈ V (T ′) and x, y ∈ V (T ′′).
If x = y = 0d−j , then (w1, w2) is an edge of T ′. On the other hand, if y 
= 0d−j , then (x, y) is an
edge of T ′′. By induction, in both cases, the edge (u, v) in T satisfies Equation (2). Since (u, v)

is arbitrary, it follows that the k-ary hypercube tree property is satisfied in T . This, by definition,
implies that T is a d-dimensional k-ary hypercube tree. �

In the rest of the paper, we will exclusively make use of constructions (a) and (b). Also, if
d = 0, both Hk(0) and Tk(0) consist of one node and no edges. For J = 0, 1, . . . , k − 1, let
JTk(d) denote the induced subgraph of Tk(d) on node set

{J b1b2 · · · bd−1 | bi ∈ {0, 1, . . . , k − 1}}.
That is, JTk(d), which we will refer to as the J -tree, is the subtree of Tk(d) with all node labels
starting with base-k digit J . For instance, the 0-tree is the induced subtree of Tk(d) on node set
{0b1b2 · · · bd−1 | bi ∈ {0, 1, . . . , k − 1}}.
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4. Some properties of the k-ary hypercube tree

The following theorem summarizes some of the properties of the k-ary hypercube tree. For brevity,
let ζ(v) = d, if v is the root; otherwise ζ(v) is the number of zeros to the right of the rightmost
nonzero digit in the k-ary representation of node v. So, ζ(v) is simply the height of node v.

Theorem 3 Let Tk(d) be a d-dimensional k-ary hypercube tree of dimension d > 0. Then,

(i) the number of nodes in the subtree rooted at node v is kζ(v);
(ii) for 0 ≤ j ≤ d, the number of nodes at level j is (k − 1)j

(
d
j

) ;
(iii) Tk(d) consists of the following subtrees each connected to the root by an edge: (k − 1)

subtrees of dimension d − 1, (k − 1) subtrees of dimension d − 2, . . . , (k − 1) subtrees
of dimension 0;

(iv) the centroid of Tk(d) is C = {0d , 10d−1} if k = 2, and C = {0d} if k > 2;
(v) C = C = M, that is, the centre, the centroid and the median are identical in Tk(d);

(vi) for all v ∈ V (Tk(d))dTk(d)(0d , v) = dHk(d)(0d , v);
(vii) the radius of Tk(d) is rad(Tk(d)) = d, and the diameter of Tk(d) is D(Tk(d)) = 2d − 1

if k = 2 and D(Tk(d)) = 2d if k > 2.

Proof (i) Let ζ(v) = j . If j ∈ {0, d}, then the result is obviously true. So, assume that 0 < j <

d, and let T be the subtree rooted at node v. By Equation (5), Tk(d) = Tk(d − j) � Tk(j).
Clearly, T is isomorphic to Tk(j), and hence contains kj nodes.

(ii) Assume the result is true for d − 1. Since Tk(d) is constructed from Tk(d − 1) by attaching
(k − 1) leaf nodes to each node in Tk(d − 1), the number of nodes at level j > 0 in Tk(d)

is equal to the number of nodes at level j in Tk(d − 1) plus (k − 1) times the number of
nodes at level j − 1 in Tk(d − 1). By induction, their total is

(k − 1)j
(

d − 1
j

)
+ (k − 1)

(
(k − 1)j−1

(
d − 1
j − 1

))
= (k − 1)j

(
d

j

)
.

(iii) By construction, there are (k − 1) trees of dimension (d − 1) linked to the root by an edge
plus one (d − 1)-dimensional tree T ′ whose root is the root of Tk(d). So, expanding T ′,
there are (k − 1) trees of dimension (d − 2) connected to the root by an edge plus one
(d − 2)-dimensional tree T ′′ whose root is the root of T ′ (which is the root of Tk(d)), and
so on. It follows that there are (k − 1) subtrees of dimension d − 1, (k − 1) subtrees of
dimension d − 2, …, (k − 1) subtrees of dimension 0, each linked to the root by an edge
(Figure 2).

(iv) Let v ∈ V (Tk(d)). If v is the root, then removing v leaves at least one subtree of size kd−1,
which is maximum. So assume v is not the root. By Part (i), the number of nodes in the
subtree rooted at node v is kζ(v). Hence, removing v leaves one connected component of

Figure 2. T3(3) consists of two T3(2)’s, two T3(1)’s and two T3(0)’s linked to its root.
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2264 M.H. Alsuwaiyel

Table 1. Distribution of nodes to levels in T4(d) for 0 ≤ d ≤ 4.

d 0 1 2 3 4

0 1
1 1 3
2 1 6 9
3 1 9 27 27
4 1 12 54 108 81

size kd − kζ(v). Consequently, if k = 2, then letting v = 10d−1, we have that bw(10d−1) =
2d−1 = bw(0d), and if k > 2, then,

bw(v) = kd − kζ(v) ≥ kd − kd−1 = (k − 1)kd−1 > kd−1 = bw(0d).

By Theorem 1, it follows that the centroid is C = {0d , 10d−1} if k = 2, and C = {0d} if
k > 2.

(v) Let T = Tk(d). Starting with T , remove all leaf nodes to obtain T ′. Next, remove all leaf
nodes of T ′ and so on until the size of the tree is reduced to k. This is the reverse of the
construction method (b) whose base case implies that the resulting tree must be either K2 if
k = 2 or K1,k−1 if k > 2. If k > 2, removing all nodes in K1,k−1 of degree 1 leaves exactly
one node. Thus, if k = 2, the remaining nodes are 0d and 10d−1, and if k > 2, the remaining
node is 0d . By Part (iv), the remaining node(s) constitute the centroid of T . But this is the
same method used for finding the centre of a tree [4]. This implies that this procedure of
successive elimination of leaf nodes when applied on Tk(d) finds both its centre and centroid.
Finally, since in any tree C = M (Theorem 2), we have that C = C = M.

(vi) This follows from the fact that Tk(d) can be obtained by performing the BFS on Hk(d)

starting from node 00 · · · 0.
(vii) By part (vi), rad(Tk(d)) = rad(Hk(d)) = d. Simple induction on d shows that the diameter

of Tk(d) is D(Tk(d)) = 2d − 1 if k = 2, and D(Tk(d)) = 2d if k > 2. In fact, this follows
from a general result on trees that can be found in [4]: in a tree T , D(T ) = 2 rad(T) if
|C| = 1, and D(T ) = 2 rad(T) − 1 if |C| = 2. �

By Theorem 3(ii), (1 + (k − 1)x)d is the generating function for the number of nodes at level d
in Tk(d). The distribution of nodes to levels in T4(d) for 0 ≤ d ≤ 4 is shown in Table 1. For
instance, in T4(2), which is shown in Figure 1, levels 0, 1 and 2 have, respectively, 1, 6 and 9
nodes.

5. Total distance of the k-ary hypercube tree

First, we compute the distance of the root of Tk(d),

dTk(d)(0
d) =

∑
v∈V (Tk(d))

dTk(d)(0
d , v),

and establish some relationships between distances in the hypercube tree Tk(d) and its
corresponding hypercube graph Hk(d).

Lemma 3 Let Tk(d) be a d-dimensional k-ary hypercube tree. Then,

(i) dHk(d)(0d) = dTk(d)(0d) = d(k − 1)kd−1.
(ii) σ(Hk(d)) = 1

2d(k − 1)k2d−1.
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Proof (i) By Theorem 3(ii), the number of nodes at distance j from the root, 0 ≤ j ≤ d, is
equal to (k − 1)j

(
d
j

)
. Hence, the distance of the root dTk(d)(0d) is computed as

dTk(d)(0
d) =

d∑
j=1

j(k − 1)j
(

d

j

)

= d(k − 1)

d∑
j=1

(k − 1)j−1

(
d − 1
j − 1

)

= d(k − 1)

d−1∑
j=0

(k − 1)j
(

d − 1
j

)

= d(k − 1)(1 + (k − 1))d−1

= d(k − 1)kd−1.

Since, by Theorem 3(vi), for all v ∈ V (Tk(d))dTk(d)(0d , v) = dHk(d)(0d , v), it follows that
dHk(d)(0d) = dTk(d)(0d) = d(k − 1)kd−1.

(ii) By symmetry of the k-ary hypercube, the distance of each node is equal to dHk(d)(0d). Hence,
by part (i), the total distance of the d-dimensional k-ary hypercube Hk(d) is

σ(Hk(d)) = kd

2
× dHk(d)(0

d) = 1

2
d(k − 1)k2d−1. �

In the remainder of this section, let κ = (2(k − 1))/k.

Lemma 4 For all k ≥ 2, d ≥ 2, the total distance of the d-dimensional k-ary hypercube tree
Tk(d) can be expressed as

σ(Tk(d)) = kσ(Tk(d − 1)) + κσHk(d).

Proof Let u and v be two nodes in subtrees ITk(d) and JTk(d), respectively. Let li,j , i < j , be
the length of the path between the root of ITk(d) and the root of JTk(d). That is, li,j is the length
of the path between nodes I0d−1 and J0d−1. Then,

li,j =
{

1 if i = 0,

2 if i 
= 0.

The distance between u and v is (Figure 3)

d(u, v) = d(u, I0d−1) + li,j + d(J0d−1, v).

Summing over all nodes u ∈ ITk(d) and v ∈ JTk(d), we have

si,j =
∑

u∈ITk(d)

∑
v∈JTk(d)

d(u, v) (10)

=
∑

u∈ITk(d)

∑
v∈JTk(d)

(d(u, I0d−1) + li,j + d(J0d−1, v))

= kd−1

⎛
⎝ ∑

u∈ITk(d)

d(u, I0d−1)

⎞
⎠ + (kd−1kd−1li,j ) +

⎛
⎝kd−1

∑
v∈JTk(d)

d(J0d−1, v)

⎞
⎠
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00...0

10...0 20...0

(k-1)0...0 (k-2)0...0

(d-1)kT

(d-1)kT
(d-1)kT

(d-1)kT

(d-1)kT

u

v

Figure 3. Proof of Lemma 4. The connection edges form Tk(1).

= 2kd−1

⎛
⎝ ∑

u∈ITk(d)

d(u, I0d−1)

⎞
⎠ + k2d−2li,j (by symmetry)

= 2kd−1dTk(d−1)(0
d−1) + k2d−2li,j . (11)

Let s denote the sum of all distances between all pairs of nodes u and v, where u and v belong
to different (d − 1)-dimensional subtrees. Then, summing over all pairs of subtrees and using
Equation (11), we have

s =
∑
i<j

si,j =
(

k

2

)
(2kd−1dTk(d−1)(0

d−1)) + k2d−2
∑
i<j

li,j .

By definition of σ ,
∑

i<j li,j = σ(Tk(1)) = σK1,k−1 = (k − 1)2. Hence,

s = 2

(
k

2

)
kd−1dTk(d−1)(0

d−1) + k2d−2σ(Tk(1))

= k(k − 1)kd−1((d − 1)(k − 1)kd−2) + k2d−2(k − 1)2 (by Lemma 3(i))

= (d − 1)(k − 1)2k2d−2 + k2d−2(k − 1)2

= dk2d−2(k − 1)2

= 1

2
dκ(k − 1)k2d−1

= κσ(Hk(d)) (by Lemma 3(ii)).

Since the total distance σ(Tk(d)) is the sum of distances within the k subtrees plus the total
interdistances between nodes in different subtrees, we conclude that σ(Tk(d)) can be expressed
by the recurrence

σ(Tk(d)) =
{

(k − 1)2 if d = 1,

kσ (Tk(d − 1)) + κσ(Hk(d)) if d > 1.
�

Let T = (V , E) be a tree and e = (u, v) be an edge of T . Let nu(e) denote the number of nodes
of T lying closer to u than v, and let nv(e) denote the number of nodes of T lying closer to v than
u. The following theorem was discovered by Wiener [17].
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Theorem 4 Let T = (V , E) be a tree. Then, σ (T ) = ∑
e∈E(T ) nu(e)nv(e).

Lemma 5 For all k ≥ 2, d ≥ 2, the total distance of the d-dimensional k-ary hypercube tree
Tk(d) can be expressed as

σ(Tk(d)) = k2 σ(Tk(d − 1)) + κ

(
kd

2

)
.

Proof By Theorem 4,

σ(Tk(d − 1)) =
∑

(u,v)∈Tk(d−1)

nunv. (12)

Since Tk(d) is constructed from Tk(d − 1) by replacing each node in Tk(d − 1) with K1,k−1, both
nu and nv in Equation (12) get multiplied by a factor of k, and Tk(d) will have (k − 1)kd−1 leaf
nodes whose incident edges’ contribution to σ(Tk(d)) is 1 × (kd − 1) each. Hence,

σ(Tk(d)) = k × k × σ(Tk(d − 1)) + ((k − 1)kd−1)(kd − 1)

= k2σ(Tk(d − 1)) + κ

(
kd

2

)
. �

Theorem 5 The total distance of the d-dimensional k-ary hypercube tree Tk(d) is

σ(Tk(d)) = 2σ(Hk(d)) − 2

k

(
kd

2

)
= dk2d − (d + 1)k2d−1 + kd−1.

Proof By Lemma 4,

kσ(Tk(d)) = k2σ(Tk(d − 1)) + kκσ(Hk(d)).

By Lemma 5,

σ(Tk(d)) = k2 σ(Tk(d − 1)) + κ

(
kd

2

)
.

Combining and simplifying yields

σ(Tk(d)) = 2 σ(Hk(d)) − 2

k

(
kd

2

)
= dk2d − (d + 1)k2d−1 + kd−1. �

Table 2 lists the values of σ(Tk(d)) for four k-ary hypercube tree s of order 256. As expected,
the larger the value of k, the lesser the total distance.

Table 2. σ(Tk(d)) for trees of order 256.

k d σ(Tk(d))

2 8 229,504
4 4 180,288

16 2 118,800
256 1 65,025
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6. Optimality of the k-ary hypercube tree

This section is concerned with the optimality of the k-ary hypercube tree Tk(d). It will be shown
that it has the least total distance among all spanning trees of the k-ary hypercube Hk(d). The basic
idea is to show that the spanning tree must contain all edges of the form (i0d−1, 0d), 0 < i < k,
and that the tree does not contain edges of the form (u, v), where u and v are in different subcubes.

In this section, we will use the letter G to denote an arbitrary spanning tree for the k-ary
hypercube. For convenience and conformity, we will also use small letters to identify subcubes
(e.g. jHk(d) for JHk(d)). Let Gk(d) be a spanning tree for Hk(d) rooted at 0d in its centroid. For
1 ≤ j ≤ k − 1, if ej = (j0d−1, 0d) ∈ E(Gk(d)), then let Sj denote the set of nodes whose path
to the root 0d of Gk(d) contains the edge ej ; otherwise Sj is empty. If Sj is nonempty, then we
define the subtree rooted at j0d−1 to be the tree induced by the nodes in Sj . If Sj is empty, then
there is no subtree rooted at j0d−1. The set of remaining nodes, which is equal to

S0 = V (Gk(d)) \
⋃

1≤j<k

Sj ,

is the set of nodes of the subtree of Gk(d) that has as its root 0d , the root of Gk(d). Note that S0

cannot be empty, as it contains 0d . The tree shown in Figure 4(a) contains four subtrees, while the
one in Figure 4(b) contains only two subtrees rooted at 0d and 20d−1. Call a tree Gk(d) ‘good’ if,
in addition to the subtree rooted at 0d , it also has k − 1 subtrees rooted at 10d−1, . . . , (k − 1)0d−1;
otherwise it is ‘not good’. The tree shown in Figure 4(a) is good, while the one in Figure 4(b) is not.

Lemma 6 If Gk(d) is not good, then there is a spanning tree Ĝk(d) that is good with the property
that σ(Ĝk(d)) ≤ σ(Gk(d)).

Proof We will treat the case in which Gk(d) has k − 1 subtrees, as the argument is similar if the
number of subtrees is less than k − 1. Note that there is at least one subtree, since, by definition of
‘good tree’, the subtree rooted at 0d is part of Gk(d). Suppose that for some j , 0 < j < k, j0d−1

is not connected to the root 0d of Gk(d). For some i 
= j , let i0d−1 be the node that is closest in the
tree Gk(d) to j0d−1 among all nodes of the form x0d−1, 0 ≤ x < k. Let i0d−1 = v0, v1, . . . , vl ,
vl+1, . . . , vm = j0d−1, for some m > l ≥ 0, be the (unique) path from i0d−1 to j0d−1 in Gk(d)

with the property that l is the largest index such that vl /∈ V (jHk(d)) and vl+1 ∈ V (jHk(d)).
Let Sj be the set of nodes in V (Gi

k(d − 1)) whose path to the root of Gk(d) contains the edge
(vl, vl+1), and Si = V (Gi

k(d − 1)) \ Sj . Let Gi
k and G

j

k be the two subgraphs induced by the
nodes in Si and Sj , respectively (Figure 5).

Let e = (vl, vl+1) and e′ = (v0, vm) = (i0d−1, j0d−1). Let Ḡk(d) be the tree obtained from
Gk(d)by deleting the edge e and adding the edge e′. Define the corresponding subtree Ḡi

k(d − 1)of

(a) (b)

0
d

d-1
10 20

d-1
d-1

30

0
d

d-1
10

d-1
20

d-1
30

Figure 4. (a) Good tree with four subtrees. (b) A tree that is not good with two subtrees.
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vl vl+1

k
iG

k
jG vl vl+1

0
d

k
iG

k
jG

(a) (b)

0
d-1iv0 =0

d-1jvm= 0
d-1jvm=0

d-1iv0 =

Figure 5. Subtree Gi
k(d − 1). (a) i = 0. (b) i > 0; the subtree rooted at 0d is not shown.

Ḡk(d) by Ḡi
k(d − 1) = Gi

k(d − 1) − e + e′. Let ni = |V (Gi
k)| and nj = |V (G

j

k)|. We now show
that this replacement of edges will not increase the total distance of Gk(d), that is, σ(Ḡk(d)) ≤
σ(Gk(d)). For brevity, let dl and dl+1 denote the distances of vl and vl+1 in Gi

k and G
j

k with respect
to Gi

k(d − 1) (before the replacement of edges). Similarly, let d0 and dm be the distances of v0

and vm in Gi
k and G

j

k with respect to Ḡi
k(d − 1) (after the replacement of edges). Then, we have

σ(Gi
k(d − 1)) = nidl+1 + njdl + ninj + σ(Gi

k) + σ(G
j

k)

and

σ(Ḡi
k(d − 1)) = nidm + njd0 + ninj + σ(Gi

k) + σ(G
j

k).

Since d0 ≤ dl and dm ≤ dl+1, it follows that σ(Ḡi
k(d − 1)) ≤ σ(Gi

k(d − 1)). It is fairly easy to
see that the sum of the remaining distances in Ḡk(d), if any, will not increase after the edge
replacement. Consequently, σ(Gk(d)) will not increase as a result of the edge replacement.

Now, if i = 0, then Ḡk(d) is good, and therefore set Ĝk(d) = Ḡk(d) (Figure 5(a)). Hence, in
the rest of the proof, we will assume that i > 0 (Figure 5(b)). We will also be primarily dealing
with Ḡk(d) instead of Gk(d). By Theorem 1, bw(0d) ≤ n/2, and since i0d−1 and j0d−1 belong
to the same component of Ḡk(d) − 0d , we must have

ni + nj ≤ n

2
, (13)

which follows from the definition of bw(0d) as the maximum number of nodes in a connected
component of Ḡk(d) − 0d . Construct Ĝk(d) from Ḡk(d) by deleting the edge (i0d−1, j0d−1) and
adding the edge (j0d−1, 0d ). Let Ĝi

k(d − 1) and Ĝ
j

k(d − 1) be the two subtrees of Ĝk(d) rooted
at i0d−1 and j0d−1, respectively. Now, we show that the total distance of Ĝk(d) is at most that of
Ḡk(d). The distance from any node in Ḡi

k(d − 1) to any node in Ḡi
k(d − 1) will be increased by 1,

and the distance from any node in Ḡi
k(d − 1) to the rest of the nodes in Ḡk(d) will be decreased

by 1. Hence, the net change in the total distance is

σ(Ĝk(d)) − σ(Ḡk(d)) = nj × ni − nj × (n − ni − nj )

= nj (2ni + nj − n).

Suppose that σ(Ĝk(d)) > σ(Ḡk(d)). Then, 2ni + nj − n > 0, or

ni >
n − nj

2
. (14)

Combining Equations (13) and (14) yields

nj < 0,
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u

w

v

Gv

ri rj

Gk
i Gk

j

Figure 6. A cross edge (u, v).

contradicting the fact that nj > 0. It follows that σ(Ĝk(d)) ≤ σ(Ḡk(d)). Since σ(Ḡk(d)) ≤
σ(Gk(d)) as shown above, we have that σ(Ĝk(d)) ≤ σ(Gk(d)). �

Recall that a subtree G
j

k(d − 1), j > 0, has as its set of nodes those whose path to the root of
Gk(d) contains the edge (j0d−1, 0d), and the remaining nodes constitute the set of nodes of the
subtree G0

k(d − 1). If v is a node in subtree Gi
k(d − 1), j ≥ 0, then the set of nodes consisting

of v and its descendants (those whose path to the root contains v) will also be called a subtree. For
instance, in Figure 6,Gv is a subtree rooted atv. LetGk(d)be a spanning tree forHk(d) andGi

k(d −
1) and Gi

k(d − 1) two subtrees of Gk(d). We will call an edge e = (u, v) a ‘cross edge’ if e ∈
E(Gi

k(d − 1)), u ∈ V (iHk(d)) and v ∈ V (jHk(d)). The other case in which e ∈ E(Gi
k(d − 1))

is symmetrical. Suppose that u ∈ V (Gi
k(d − 1)) ∩ V (iHk(d)), v ∈ V (Gi

k(d − 1)) ∩ V (jHk(d))

andw ∈ V (G
j

k(d − 1)) ∩ V (jHk(d)). LetGv be the subtree rooted atv, and assume thatV (Gv) ⊆
V (jHk(d)). We will also assume without loss of generality that (w, v), which is not in E(G

j

k(d −
1)), is the last edge on the path from rj to v, which is entirely contained in jHk(d). It is also
reasonable to assume that the two paths from ri to u and from rj to w are of shortest length in
Hk(d). Since u belongs to V (iHk(d)), v belongs to V (jHk(d)) and there is an edge connecting
u and v, the nodes u and v must have the form u = ix1 · · · xd−1 and v = jx1 · · · xd−1 for some
xl ∈ {0, 1, . . . , k − 1}, l = 1, . . . , d − 1. From this fact as well as from the symmetry present in
Hk(d), and the above assumption, it can be concluded that d(ri, u) = d(rj , w). Now, since the
node w is on the shortest path from rj to v, it follows that

d(rj , w) < d(ri, u). (15)

Lemma 7 Let Ĝk(d) be the tree constructed from Gk(d) by deleting the edge (u, v) and adding
the edge (w, v). Then, dĜi

k(d−1)(ri) + d
Ĝ

j

k (d−1)
(rj ) ≤ dGi

k(d−1)(ri) + d
G

j

k (d−1)
(rj ).

Proof (Figure 6). Assume for simplicity that there is only one cross edge, namely (u, v), as the
generalization to more than one cross edge can be managed by removing one cross edge at a time
starting, say, at the one closest to the root of Gk(d). Let |V (Gv)| = m. Let dGv

(v) be the distance
of v in Gv , which is equal to

∑
z∈Gv

d(v, z). Since there are m paths from ri to the nodes in Gv ,

dĜi
k(d−1)(ri) = dGi

k(d−1)(ri) − md(ri, u) − md(u, v) − dGv
(v)

= dGi
k(d−1)(ri) − md(ri, u) − m − dGv

(v), (16)

and

d
Ĝ

j

k (d−1)
(rj ) = d

G
j

k (d−1)
(rj ) + md(rj , w) + md(w, v) + dGv

(v)

= d
G

j

k (d−1)
(rj ) + md(rj , w) + m + dGv

(v)

≤ d
G

j

k (d−1)
(rj ) + m d(ri, u) + m + dGv

(v), (17)
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where the last inequality follows from Equation (15). Combining Equations (16) and (17) yields

dĜi
k(d−1)(ri) + d

Ĝ
j

k (d−1)
(rj ) ≤ dGi

k(d−1)(ri) + d
G

j

k (d−1)
(rj ). (18)

�

Applying Lemma 7 on each pair of subtrees Gi
k(d − 1) and G

j

k(d − 1) results in k (possibly
new) spanning trees Ĝl

k(d − 1) for lHk(d), 0 ≤ l < k, with the property that no two of them share
a cross edge. Now, applying Equation (18) on all pairs of subtrees, we have

∑
0≤i<j<k

(dGi
k(d−1)(ri) + d

G
j

k (d−1)
(rj )) ≥

∑
0≤i<j<k

(dĜi
k(d−1)(ri) + d

Ĝ
j

k (d−1)
(rj )).

Since for 0 ≤ l < k, Ĝl
k(d − 1) is a spanning tree for lHk(d), we have as a consequence

∑
0≤i<j<k

(dGi
k(d−1)(i0

d−1) + d
G

j

k (d−1)
(j0d−1)) ≥

∑
0≤i<j<k

(diHk(d)(i0
d−1) + djHk(d)(j0d−1)). (19)

Note that applying Lemma 7 on Gk(d) until all cross edges are removed will not increase its total
distance, that is, σ(Ĝk(d)) ≤ σ(Gk(d)). We justify this in connection with the example graph
shown in Figure 6. Since only those distances involving nodes in V (Gv) will be affected by the
replacement of edges, and since the sum of the distances of the two roots will not increase, it must
be the case that the sum of all distances involving those nodes in V (Gv) will not increase.

Theorem 6 The total distance of the d-dimensional k-ary hypercube tree Tk(d) is minimum over
all spanning trees of Hk(d).

Proof We use induction on d . If d = 1, then, clearly, Tk(d) = K1,k−1, the star graph of order
k, which is optimal. For the induction step, suppose that d ≥ 2, and suppose that the k-ary
hypercube tree Tk(d − 1) has minimum total distance over all spanning trees Gk(d − 1) for the
(d − 1)-dimensional k-ary hypercube Hk(d − 1). Let Gk(d) be any spanning tree for the k-ary
hypercube Hk(d). By Lemma 6, we may assume that Gk(d) is good, so it has k subtrees Gi

k(d − 1),
0 ≤ i < k. By repeated application of Lemma 7, we may also assume that Gk(d) has no cross
edges. Let

σ1(Gk(d)) =
∑

0≤i<j<k

∑
u∈Gi

k(d−1)

∑
v∈G

j

k (d−1)

dGk(d)(u, v)

and

σ2(Gk(d)) =
k−1∑
i=0

σ(Gi
k(d − 1)).

Define σ1(Tk(d)) and σ2(Tk(d)) similarly. So, σ(Gk(d)) = σ1(Gk(d)) + σ2(Gk(d)), and
σ(Tk(d)) = σ1(Tk(d)) + σ2(Tk(d)). Since Gk(d) has no cross edges, each subtree spans exactly
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2272 M.H. Alsuwaiyel

one subcube, and hence the number of nodes in each subtree of Gk(d) is exactly kd−1. Thus, we
have

σ1(Gk(d)) =
∑

0≤i<j<k

∑
u∈Gi

k(d−1)

∑
v∈G

j

k (d−1)

dGk(d)(u, v)

=
∑

0≤i<j<k

∑
u∈Gi

k(d−1)

∑
v∈G

j

k (d−1)

(d(u, i0d−1) + d(j0d−1, v)) + k2d−2
∑

0≤i<j<k

li,j

=
∑

0≤i<j<k

kd−1(dGi
k(d−1)(i0

d−1) + d
G

j

k (d−1)
(j0d−1)) + k2d−2

∑
0≤i<j<k

li,j

≥
∑

0≤i<j<k

kd−1(diHk(d)(i0
d−1) + djHk(d)(j0d−1)) + k2d−2

∑
0≤i<j<k

li,j , (20)

where inequality (20) follows from Equation (19), and li,j is as defined in the proof of Lemma 4.
The derivation here is similar to that in the proof of Lemma 4, so after simplification, Equation
(20) reduces to

σ1(Gk(d)) ≥ d(k − 1)2k2d−2 = κσ(Hk(d)) = σ1(Tk(d)). (21)

By induction, for 0 ≤ i < k, σ(Gi
k(d − 1)) ≥ σ(Tk(d − 1)). Hence,

σ2(Gk(d)) =
k−1∑
i=0

σ(Gi
k(d − 1)) ≥ kσ(Tk(d − 1)) = σ2(Tk(d)). (22)

Combining inequalities (21) and (22) yields

σ(Gk(d)) = σ1(Gk(d)) + σ2(Gk(d)) ≥ σ1(Tk(d)) + σ2(Tk(d)) = σ(Tk(d)).

It follows that σ(Tk(d)) is minimum over all spanning trees of Hk(d). �

7. Average distance of the k-ary hypercube tree

Theorem 7 The average distance of the d-dimensional k-ary hypercube tree, d ≥ 1, is

μ(Tk(d)) = 2d(k − 1)kd−1

kd − 1
− 2

k
.

Proof By Theorem 6,

μ(Tk(d)) =
(

kd

2

)−1 (
2σ(Hk(d)) − 2

k

(
kd

2

))

= 2μ(Hk(d)) − 2

k
(23)

= 2d(k − 1)kd−1

kd − 1
− 2

k
.

�

D
ow

nl
oa

de
d 

by
 [

M
. A

ls
uw

ai
ye

l]
 a

t 0
7:

29
 2

8 
Ju

ne
 2

01
1 



International Journal of Computer Mathematics 2273

Given a graph G, let r(G) = min{σ(T )/σ (G) | T is a spanning tree of G}. Entringer et al. [8]
have shown that for a connected graph G of order n, r(G) ≤ 2(1 − 1/n), and equality is achieved
if and only if G = Kn and T = K1,n−1. Dobrynin et al. [5] stated that the dependence of r on the
density of G is not clear, and conjectured that if T is of minimum total distance over all possible
spanning trees of H2(d), then

r(H2(d)) = 2

(
1 − 1

d

)
+ 1

d2d−1
∼ 2. (24)

In Theorem 6, we proved that σ(Tk(d)) is of minimum total distance among all spanning trees of
Hk(d). Consequently, by Equation (23),

r(Hk(d)) = 2 − 2/(kμ(Hk(d)))

= 2 − 2(kd − 1)

d(k − 1)kd

= 2 − 2

d(k − 1)
+ 2

d(k − 1)kd

= 2

(
1 − 1

d(k − 1)

)
+ 2

d(k − 1)kd
. (25)

By Equation (25), the limiting value of r(Hk(d)) is 2. Clearly, Equation (25) simplifies to
Equation (24) when k = 2.

8. Conclusions and open problems

In this paper, we presented some of the structural properties of the d-dimensional k-ary hypercube
tree Tk(d) and investigated in detail its total (and hence average) distance. Aside from its applica-
tions, the derived formula for its total distance can be used to evaluate or assess the performance of
approximation or randomized algorithms that are designed for general graphs, especially regular
graphs. It is worthwhile noting that performing BFS on the generalized hypercube may not result
in an optimal tree as shown in Figure 7. In this figure, two BFS spanning trees are shown for the
graph K2 × K3 (Figure 7(a)). The tree in Part (b) is optimal, while that in Part (c) is not.

This is due to the nondeterministic nature of BFS. Since K2 × K3 is vertex-transitive (but not
edge-transitive), Figure 7 also shows that performing BFS on vertex-transitive graphs may not
result in optimal spanning trees. However, applying BFS on the family of odd graphs, which is
a generalization of the Petersen graph, may result in optimal spanning trees. This is (only) an
observation of the results of conducting simple experimentation. If this turns out to be true, then,
perhaps, it is due to the fact that they are distance-transitive.

The foregoing discussion raises the interesting question of characterizing those graphs on which
applying BFS always gives optimal spanning trees.

(c)(b)(a)

Figure 7. (a) A vertex-transitive graph. (b) Optimal BFS tree. (c) Nonoptimal BFS tree.
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