
Solutions 79

1.19 Solutions

1.1. § Let A[1..60] = 11, 12, . . . , 70. How many comparisons are per-
formed by Algorithm binarysearch when searching for the fol-
lowing values of x?
(a) 33. (b) 7. (c) 70. (d) 77.

(a) 6. (b) 5. (c) 6. (d) 6.

1.2. Let A[1..2000] = 1, 2, . . . , 2000. How many comparisons are per-
formed by Algorithm binarysearch when searching for the fol-
lowing values of x?
(a) �3. (b) 1. (c) 1000. (d) 4000.

(a) 10. (b) 10. (c) 1. (d) 11.

1.3. Draw the decision tree for the binary search algorithm with an
input of
(a) 12 elements. (b) 17 elements. (c) 25 elements. (d) 35 elements.

Similar to Fig. 1.1.

1.4. Show that the height of the decision tree for binary search is blog nc.

Proof is by induction on n, the number of nodes.
Basis step: If n = 1, then there is only one element, and one node
in the decision tree, and blog 1c = 0, which is the height of the tree.
Induction step: Suppose the hypothesis holds for all trees with less
than n nodes. We show that it also holds for n. Let T be a decision
tree with n nodes. The root r of T corresponds to the first compari-
son. Let Tl and Th be the two subtrees of r, where Tl corresponds to
subsequent comparisons in A[1..bn/2c], and Th corresponds to sub-
sequent comparisons in A[bn/2c + 1..n]. By induction, the height
of Tl is blog(n/2)c, and the height of Th is blog(n/2)c. Hence, the
height of T is max{blog(n/2)c, blog(n/2)c} + 1 = blog(n/2)c + 1 =
blog nc � 1 + 1 = blog nc. Thus, the hypothesis holds for n, and
hence the height of the decision tree for binary search is blog nc for
all n � 1.

§Some of the solutions in this chapter were contributed by Faisal Alvi.

80 Basic Concepts in Algorithmic Analysis

1.5. Illustrate the operation of Algorithm selectionsort on the array

45 33 24 45 12 12 24 12 .

How many comparisons are performed by the algorithm?

At each iteration of Algorithm selectionsort, the array has the
situation shown in Table 1.2.

Table 1.2 Algorithm selectionsort. Exercise 1.5.

Iteration Array

0 45,33,24,45,12,12,24,12
1 12,33,24,45,45,12,24,12
2 12,12,24,45,45,33,24,12
3 12,12,12,45,45,33,24,24
4 12,12,12,24,45,33,45,24
5 12,12,12 ,24,24,45,33,45
6 12,12,12,24,24,33,45,45
7 12,12,12,24,24,33,45,45

Note that in iterations 6 and 7 there is no interchange in the array.
No. of comparisons = 7 + 6 + 5 + 4 + 3 + 2 + 1 = 7*6/2 = 21.

1.6. Consider modifying Algorithm selectionsort as shown in Algo-
rithm modselectionsort.

Algorithm 1.24 modselectionsort

Input: An array A[1..n] of n elements.

Output: A[1..n] sorted in nondecreasing order.

1. for i 1 to n� 1
2. for j i + 1 to n
3. if A[j] < A[i] then interchange A[i] and A[j]
4. end for

5. end for

(a) What is the minimum number of element assignments per-
formed by Algorithm modselectionsort? When is this min-
imum achieved?

Solutions 81

(b) What is the maximum number of element assignments per-
formed by Algorithm modselectionsort? Note that each
interchange is implemented using three element assignments.
When is this maximum achieved?

In Algorithm modselectionsort, instead of maintaining a vari-
able k, which stores the position of the minimum element of A we
immediately interchange the minimum element with A[i].
(a) Minimum number of element assignments = 0. This minimum

is achieved when the array is already sorted in ascending order.

(b) Maximum number of element assignments = 3n(n�1)/2. This
maximum is achieved when the array is already sorted in de-
scending order.

1.7. Illustrate the operation of Algorithm insertionsort on the array

30 12 13 13 44 12 25 13 .

How many comparisons are performed by the algorithm?

At each iteration of Algorithm insertionsort the array has the
situation shown in Table 1.3 (the sorted part of the array is sepa-
rated by |)

Table 1.3 Algorithm insertionsort. Exercise 1.7.

Iteration Array # comparisons

0 30 | 12 13 13 44 12 25 13 0
1 12 30 | 13 13 44 12 25 13 1
2 12 13 30 | 13 44 12 25 13 2
3 12 13 13 30 | 44 12 25 13 2
4 12 13 13 30 44 | 12 25 13 1
5 12 12 13 13 30 44 | 25 13 5
6 12 12 13 13 25 30 44 | 13 3
7 12 12 13 13 13 25 30 44 4

No. of comparisons = 1 + 2 + 2 + 1 + 5 + 3 + 4 = 18.

82 Basic Concepts in Algorithmic Analysis

1.8. How many comparisons are performed by Algorithm insertion-

sort when presented with the input

4 3 12 5 6 7 2 9 ?

At each iteration of Algorithm insertionsort the array has the
situation shown in Table 1.4 (the sorted part of the array is sepa-
rated by |)

Table 1.4 Algorithm insertionsort. Exercise 1.8.

Iteration Array # comparisons

0 4 | 3 12 5 6 7 2 9 0
1 3 4 | 12 5 6 7 2 9 1
2 3 4 12 | 5 6 7 2 9 1
3 3 4 5 12 | 6 7 2 9 2
4 3 4 5 6 12 | 7 2 9 2
5 3 4 5 6 7 12 | 2 9 2
6 2 3 4 5 6 7 12 | 9 6
7 2 3 4 5 6 7 9 12 2

No. of comparisons = 1 + 1 + 2 + 2 + 2 + 6 + 2 = 16.

1.9. Prove Observation 1.4.

The number of element comparisons performed by Algorithm in-

sertionsort is between n � 1 and n(n � 1)/2. The number of
element assignments is equal to the number of element compar-
isons plus n� 1.

Proof. For the number of element comparisons, see Sec. 1.6.
For the number of element assignments, note that each iteration of
the inner while loop includes one comparison and one assignment.
But if the while loop test fails, there is one element comparison
but no element assignment. In other words, if there are k element
comparisons, then there are k�1 element assignments. If the outer
for loop is executed n�1 times, then there are (n�1)(k�1) element
assignments and (n�1)k element comparisons within the while loop
itself. Furthermore, in each iteration of the for loop, 2 assignments

Solutions 83

(Steps 2 and 8) take place. Therefore in n� 1 iterations, 2(n� 1)
assignments take place.
Hence, the number of element comparisons = (n�1)k, and number
of element assignments = 2(n�1)+(n�1)(k�1) = n�1+(n�1)k,
which is equal to n� 1+ number of element comparisons. ⇤

1.10. Which algorithm is more e�cient: Algorithm insertionsort or
Algorithm selectionsort? What if the input array consists of
very large records? Explain.

Algorithm insertionsort is more e�cient because the number of
element comparisons in Algorithm insertionsort is less than or
equal to those in Algorithm selectionsort. For large records,
element assignments are more costly than element comparisons.
So, Algorithm selectionsort may be preferable since it performs
the least number of element assignments.

1.11. Illustrate the operation of Algorithm bottomupsort on the array

A[1..16] = 11 12 1 5 15 3 4 10 7 2 16 9 8 14 13 6 .

How many comparisons are performed by the algorithm?

Similar to the examples in Figs. 1.3 and 1.4.

1.12. Illustrate the operation of Algorithm bottomupsort on the array

A[1..11] = 2 17 19 5 13 11 4 8 15 12 7 .

How many comparisons are performed by the algorithm?

Similar to the examples in Figs. 1.3 and 1.4.

1.13. Give an array A[1..8] of integers on which Algorithm bottomup-

sort performs
(a) the minimum number of element comparisons.

(b) the maximum number of element comparisons.

The minimum number of element comparisons is (n log n)/2 =
(8 log 8)/2 = 12, for the array: 1 2 3 4 5 6 7 8 .
The maximum number of element comparisons is n log n� n+ 1 =
17, for the array: 10 15 9 20 5 25 3 40 .

84 Basic Concepts in Algorithmic Analysis

1.14. Fill in the blanks with either true or false:

f(n) g(n) f = O(g) f = ⌦(g) f = ⇥(g)

2n3 + 3n 100n2 + 2n + 100 false true false

50n + log n 10n + log log n true true true

50n log n 10n log log n false true false

log n log2 n true false false

n! 5n false true false

1.15. Express the following functions in terms of the ⇥-notation.
(a) 2n + 3 log100 n.

(b) 7n3 + 1000n log n + 3n.

(c) 3n1.5 + (
p
n)3 log n.

(d) 2n + 100n + n!.

(a) ⇥(n). (b) ⇥(n3). (c) ⇥(n1.5 log n). (d) ⇥(n!).

1.16. Express the following functions in terms of the ⇥-notation.
(a) 18n3 + log n8.

(b) (n3 + n)/(n + 5).

(c) log2 n +
p
n + log log n.

(d) n!/2n + nn.

(a) ⇥(n3). (b) ⇥(n2). (c) ⇥(
p
n). (d) ⇥(nn).

1.17. Consider the sorting algorithm shown below, which is called bub-

blesort.

(a) What is the minimum number of element comparisons per-
formed by the algorithm? When is this minimum achieved?

(b) What is the maximum number of element comparisons per-
formed by the algorithm? When is this maximum achieved?

(c) What is the minimum number of element assignments per-
formed by the algorithm? When is this minimum achieved?

(d) What is the maximum number of element assignments per-
formed by the algorithm? When is this maximum achieved?

(e) Express the running time of Algorithm bubblesort in terms
of the O and ⌦ notations.

Solutions 85

Algorithm 1.25 bubblesort

Input: An array A[1..n] of n elements.

Output: A[1..n] sorted in nondecreasing order.

1. i 1; sorted false
2. while i  n� 1 and not sorted
3. sorted true
4. for j n downto i + 1
5. if A[j] < A[j � 1] then
6. interchange A[j] and A[j � 1]
7. sorted false
8. end if

9. end for

10. i i + 1
11. end while

(f) Can the running time of the algorithm be expressed in terms
of the ⇥-notation? Explain.

(a) Algorithm bubblesort works as follows: In each iteration,
adjacent elements are compared and interchanged from the
end of the array to the beginning. In this way, the smallest
element “bubbles” to the first position, the 2nd smallest el-
ement “bubbles” to the second position in the array and so
on.

(b) The minimum number of element comparisons = n� 1. This
happens when the array is sorted in increasing order.

(c) The maximum number of element comparisons = n(n� 1)/2,
when the array is sorted in decreasing order.

(d) The minimum number of assignments = 0, when the array is
sorted.

(e) Assuming that each interchange involves 3 assignments, the
maximum number of assignments will be achieved when each
comparison operation results in an assignment. The maximum
number of assignments = 3n(n� 1)/2.

(f) Assume that element comparison is the basic operation. In
terms of upper bound, the running time is O(n2). In terms of
lower bound, the running time is ⌦(n).

(g) No. Because worst case and best case times belong to di↵erent

86 Basic Concepts in Algorithmic Analysis

complexity classes.

1.18. Find two monotonically increasing functions f(n) and g(n) such
that f(n) 6= O(g(n)) and g(n) 6= O(f(n)).

Two such functions are: f(n) = n+sin2(n) and g(n) = n+cos2(n).
It can be empirically verified that f(n) and g(n) satisfy the stated
conditions.

1.19. Is x = O(x sinx)? Use the definition of the O-notation to prove
your answer.

f(n) is O(g(n)) if for all x � x0, there exists a constant c > 0 such
that f(n)  cg(n). Here, x  cx sinx or c sinx � 1.
There is no constant c > 0 satisfying the above inequality since
sinx fluctuates between -1 and +1 for x � x0. It follows that
x 6= O(x sinx).

1.20. Prove that
P

n

j=1 j
k is O(nk+1) and ⌦(nk+1), where k is a positive

integer. Conclude that it is ⇥(nk+1).
P

n

j=1 j
k = nk +(n�1)k + . . .+2k +1k < n⇥nk. Hence,

P
n

j=1 j
k =

O(nk+1). On the other hand,

nX

j=1

jk = nk + (n� 1)k + . . . + (bn/2c)k| {z }
n/2 terms

+ . . . + 2k + 1k.

Hence,
P

n

j=1 j
k > (n/2) ⇥ (n/2)k = nk+1/2k+1 = ⌦(nk+1). It

follows that
P

n

j=1 j
k = ⇥(nk+1).

1.21. Let f(n) = {1/n + 1/n2 + 1/n3 + . . .}. Express f(n) in terms of
the ⇥-notation. (Hint: Find a recursive definition of f(n)).

Write f(n) = 1
n

+ 1
n
f(n). Then, f(n)(1 � 1

n
) = 1

n
, or f(n) = 1

n�1 .
It follows that f(n) = ⇥(1/n).

1.22. Show that n100 = O(2n), but 2n 6= O(n100).

limn!1
n
100

2n = limn!1
2100 log n

2n = 0. Hence, n100 = o(2n), which
means n100 = O(2n), but 2n 6= O(n100). See Exercise 1.44 for the
more general case.

Solutions 87

1.23. Show that 2n is not ⇥(3n).

limn!1
2n

3n = limn!1
�
2
3

�n
= 0. Hence, 2n = o(3n), which means

2n 6= ⇥(3n).

1.24. Is n! = ⇥(nn)? Prove your answer.

lim
n!1

n!

nn
= lim

n!1

n

n

n� 1

n

n� 2

n
. . .

1

n

= lim
n!1

1 ⇥
✓

1 � 1

n

◆
⇥
✓

1 � 2

n

◆
⇥ . . .⇥ 2

n
⇥ 1

n
= 1 ⇥ 1 ⇥ 1 ⇥ . . .⇥ 0 ⇥ 0 = 0

Hence, n! = o(nn), which means n! 6= ⇥(nn).

1.25. Is 2n
2

= ⇥(2n
3

)? Prove your answer.

lim
n!1

2n
2

2n3 = lim
n!1

✓
1

2n3�n2

◆
= lim

n!1

✓
1

2n2

◆
lim
n!1

✓
1

2n�1

◆
= 0.

Hence, 2n
2

= o(2n
3

), which means 2n
2 6= ⇥(2n

3

).

1.26. Carefully explain the di↵erence between O(1) and ⇥(1).

f(n) = O(1) means f(n) is bounded above by a constant, e.g.
1
n
, 5, n�3 log n. On the other hand, f(n) = ⇥(1) means f(n) is

bounded above and below by a constant, e.g. n+5
n+6 , 100.

1.27. Is the function blog nc! O(n), ⌦(n), ⇥(n)? Prove your answer.

Consider the case when n = 2k, so that blog nc = log n = k. It is
easy to see that k! = ⌦(2k) (Consider limn!1

k

2
k�1
2

k�2
2 . . . 1

2 6= 0).
Hence, k! = ⌦(2k) = ⌦(n).
The above argument can be genralized to blog nc since log n� 1 <
blog nc  log n.

1.28. Can we use the � relation described in Sec. 1.8.6 to compare the
order of growth of n2 and 100n2? Explain.

88 Basic Concepts in Algorithmic Analysis

No, since n2 and 100n2 are both quadratic and belong to the same
complexity class.

1.29. Use the � relation to order the following functions by growth rate:
n1/100,

p
n, log n100, n log n, 5, log log n, log2 n, (

p
n)n, (1/2)n, 2n

2

, n!.

(1/2)n � 5 � log log n � log n100 � log2 n � n1/100 �
p
n �

n log n � (
p
n)n � n! � 2n

2

.

1.30. Consider the following problem. Given an array A[1..n] of integers,
test each element a in A to see whether it is even or odd. If a is
even, then leave it; otherwise multiply it by 2.
(a) Which one of the O and ⇥ notations is more appropriate to

measure the number of multiplications? Explain.

(b) Which one of the O and ⇥ notations is more appropriate to
measure the number of element tests? Explain.

(a) The O-notation is better since the minimum number of mul-
tiplications is zero and the maximum is n.

(b) The ⇥-notation is better since the number of element tests is
exactly n.

1.31. Give a more e�cient algorithm than the one given in Example 1.22.
What is the time complexity of your algorithm?

Algorithm count1mod computes for each perfect square l between
1 and n the sum

P
l

i=1 i. Its running time is ⇥(n).
A much more e�cient method is given by Algorithm count1mod2

below. Its running time is ⇥(k) = ⇥(
p
n).

1.32. Consider Algorithm count6 whose input is a positive integer n.
(a) How many times Step 6 is executed?

(b) Which one of the O and ⇥ notations is more appropriate to
express the time complexity of the algorithm? Explain.

(c) What is the time complexity of the algorithm?

(a) Let r = blog nc. Then, number of times Step 6 is executed is

rX

i=1

i+5X

j=i

i
2X

k=1

1 =
rX

i=1

i+5X

j=i

i2 =
rX

i=1

6i2 = r(r + 1)(2r + 1).

Solutions 89

Algorithm 1.26 count1mod

Input: n = k2 for some integer k.

Output:
Pl

i=1
i for each perfect square l between 1 and n.

1. k
p
n

2. sum[1] 1
3. for j 2 to k
4. s 0
5. for r (j � 1)2 + 1 to j2

6. s s + r
7. end for

8. sum[j] sum[j � 1] + s
9. end for

10. return sum[1..k]

Algorithm 1.27 count1mod2

Input: n = k2 for some integer k.

Output:
Pl

i=1
i for each perfect square l between 1 and n.

1. k
p
n

2. for j 1 to k
3. l j2.
4. sum[j] l(l + 1)/2
5. end for

6. return sum[1..k]

Algorithm 1.28 count6

1. comment: Exercise 1.32

2. count 0
3. for i 1 to blog nc
4. for j i to i + 5
5. for k 1 to i2

6. count count + 1
7. end for

8. end for

9. end for

(b) The ⇥-notation since the bound is tight.

(c) ⇥(r3) = ⇥(log3 n).

90 Basic Concepts in Algorithmic Analysis

1.33. Consider Algorithm count7 whose input is a positive integer n.

Algorithm 1.29 count7

1. comment: Exercise 1.33

2. count 0
3. for i 1 to n
4. j bn/2c
5. while j � 1
6. count count + 1
7. if j is odd then j 0 else j j/2
8. end while

9. end for

(a) What is the maximum number of times Step 6 is executed
when n is a power of 2?

(b) What is the time complexity of the algorithm expressed in the
O-notation?

(c) What is the time complexity of the algorithm expressed in the
⌦-notation?

(d) Which one of the O and ⇥ notations is more appropriate to
express the time complexity of the algorithm? Explain briefly.

(a) For n = 2k, each time the inner while loop executes for a
maximum of k times, the outer for loop executes n times. So,
the maximum number of times is nk = n log n.

(b) O(n log n).

(c) ⌦(n) for an input of the form 2k � 1.

(d) The O-notation is more suitable since the upper and lower
bounds do not match.

1.34. Consider Algorithm count8 whose input is a positive integer n.
(a) What is the maximum number of times Step 7 is executed

when n is a power of 2?

(b) What is the maximum number of times Step 7 is executed
when n is a power of 3?

(c) What is the time complexity of the algorithm expressed in the
O-notation?

(d) What is the time complexity of the algorithm expressed in the

Solutions 91

Algorithm 1.30 count8

1. comment: Exercise 1.34

2. count 0
3. for i 1 to n
4. j bn/3c
5. while j � 1
6. for k 1 to i
7. count count + 1
8. end for

9. if j is even then j 0 else j bj/3c
10. end while

11. end for

⌦-notation?

(e) Which one of the O and ⇥ notations is more appropriate to
express the time complexity of the algorithm? Explain briefly.

(a) The analysis is complicated, but it has been empirically found
that if the input is n = 2k, for 0  k  51, the algorithm
executes Step 7 the maximum number of times when k = 16.

(b) Let n = 3r. Then, the maximum number of times Step 7 is
executed is

nX

i=1

rX

l=1

iX

k=1

1 =
nX

i=1

ir =
n(n + 1)

2
log3 n.

(c) O(n2 log n).

(d) ⌦(n2) (for example, when the input is 6m, where m is any
positive integer).

(e) The O-notation is more suitable since the upper and lower
bounds do not match.

1.35. Write an algorithm to find the maximum and minimum of a se-
quence of n integers stored in array A[1..n] such that its time com-
plexity is
(a) O(n).

(b) ⌦(n log n).

(a) Scan the array from left to right, inspecting each element, and
return the maximum and minimum.

92 Basic Concepts in Algorithmic Analysis

(b) Sort the array and return A[1] and A[n].

1.36. Let A[1..n] be an array of distinct integers, where n > 2. Give an
O(1) time algorithm to find an element in A that is neither the
maximum nor the minimum.

Return the median of the first three elements.

1.37. Consider the element uniqueness problem: Given a set of integers,
determine whether two of them are equal. Give an e�cient algo-
rithm to solve this problem. Assume that the integers are stored
in array A[1..n]. What is the time complexity of your algorithm?

One way to solve the element uniqueness problem is to compare
each element with every other element and determine if any two
are equal. This will take n(n� 1)/2 comparisons in the worst case
which means O(n2) time complexity. A better way is to sort the
array in time ⇥(n log n). Then, by comparing adjacent elements
only (A[1] and A[2], A[2] and A[3], . . .) we can determine in n� 1
comparisons if any two elements are equal. The time complexity is
⇥(n log n).

1.38. Give an algorithm that evaluates an input polynomial

anx
n + an�1x

n�1 + . . . + a1x + a0

for a given value of x in time
(a) ⌦(n2).

(b) O(n).

(a) One way is to compute anxn, an�1xn�1 , etc. separately. This
can be done by multiplying x with itself n times and then
multiplying the result by an to compute anxn. This takes n
multiplications. Similarly an�1xn�1 will take n � 1 multipli-
cations. Together the entire generation of terms would take
at least

P1
i=n

i = n(n + 1)/2 = ⌦(n2) operations.

(b) We can use Horner’s method, which evaluates a polynomial by
additions and multiplications simultaneously. Compute anx
by a single multiplication. Add an�1 to give the term anx +
an�1. Multiply the result by x again to give anx2 + an�1x,

Solutions 93

etc. In other words, we compute

a0 + x(a1 + . . . + x(an�2 + x(an�1 + anx)) . . .).

Thus, in a total of n multiplications (and additions) we’ll gen-
erate the polynomial, which is a maximum of O(n) operations.

1.39. Let S be a set of n positive integers, where n is even. Give an
e�cient algorithm to partition S into two subsets S1 and S2 of n/2
elements each with the property that the di↵erence between the
sum of the elements in S1 and the sum of the elements in S2 is
maximum. What is the time complexity of your algorithm?

A good way to partition an array into two halves such that the
di↵erence between the elements in the lower half and those in the
upper half of the elements is maximum is by simply sorting the
array. This operation would take time ⇥(n log n).

1.40. Suppose we change the word “maximum” to “minimum” in Exer-
cise 1.39. Give an algorithm to solve the modified problem. Com-
pare the time complexity of your algorithm with that obtained in
Exercise 1.39.

It seems the only way to achieve minimum partitioning is to check
all possible partitions. There are

�
n

n/2

�
partitions of n/2 elements

each in an array of n elements.

1.41. Let m and n be two positive integers. The greatest common divisor
of m and n, denoted by gcd(m,n), is the largest integer that divides
both m and n. For example gcd(12, 18) = 6. Consider Algorithm
euclid shown below, to compute gcd(m,n).

(a) Does it matter if in the first call gcd(m,n) it happens that
n < m? Explain.

(b) Prove the correctness of Algorithm euclid. (Hint: Make use
of the following theorem: If r divides both m and n, then r
divides m� n).

(c) Show that the running time of Algorithm euclid is maximum
if m and n are two consecutive numbers in the Fibonacci se-
quence defined by

f1 = f2 = 1; fn = fn�1 + fn�2 for n > 2.

94 Basic Concepts in Algorithmic Analysis

Algorithm 1.31 euclid

Input: Two positive integers m and n.

Output: gcd(m,n).

1. comment: Exercise 1.41

2. repeat

3. r n mod m
4. n m
5. m r
6. until r = 0
7. return n

(d) Analyze the running time of Algorithm euclid in terms of n,
assuming that n � m.

(e) Can the time complexity of Algorithm euclid be expressed
using the ⇥-notation? Explain.

(a) No, it doesn’t matter because if n < m then n and m will get
interchanged in the first iteration.

(b) Suppose that gcd(m,n) = x. Then, n mod m is the small-
est positive di↵erence obtained by subtracting multiples of m
from n. In other words, n mod m = n � pm for some p such
that n� (p+ 1)m < 0. So, if x divides n and m, then it must
also divide n� pm = n mod m. In other words,

gcd(n,m) = gcd(m,n mod m)

= gcd(n mod m,m mod (n mod m))

...

= gcd(x, 0)

= x.

(c) In the Euclidean algorithm, every two iterations reduce the
integer n to n mod m. To achieve maximum number of it-
erations, it is desirable that n must be reduced as little as
possible. This can be achieved when in each iteration m is
subtracted only once. In other words, p = 1 for n mod m =
n � pm. Furthermore, the gcd must also be 1 in order to
ensure the maximum number of iterations. In the fibonacci

Solutions 95

sequence, fn mod fn�1 = fn�2 since fn � fn�1 = fn�2 and
fn � 2fn�1 < 0, so that

gcd(fn, fn�1) = gcd(fn�1, fn�2) = . . . = gcd(1, 0) = 1.

It takes n iterations of the Euclidean algorithm to find
gcd(fn, fn�1). Since in each iteration, the quotient of division
of fn and fn�1 is always 1 and the gcd is also 1, it follows that
finding gcd(fn, fn�1) takes maximum time in the Euclidean
algorithm.

(d) Assume that n > m. Then, after the first two iterations,
the new value of n is n � m ⇥ bn/mc. If m > n/2, then
n�m⇥bn/mc = n�m < n/2. On the other hand, if m < n/2,
then if n = pm + r, where r is the remainder after division
and p � 2, then bn/mc = p, and hence n � m ⇥ bn/mc =
n�m⇥p = pm+r�pm = r which is less than m, which in turn
is less than n/2. So, for all values of m,n reduces by at least
one half in each two consecutive iterations. In other words,
T (n/2)  T (n/2) + c, which means that T (n) = O(log n).

(e) No, because time may vary form input to input.

1.42. Find the time complexity of Algorithm euclid discussed in Exer-
cise 1.41 measured in terms of the input size. Is it logarithmic,
linear, exponential? Explain.

Measured in terms of its input size (the number of digits in n),
the algorithm is linear because n consists of blog10 nc + 1 digits.
Assuming k = blog10 nc + 1, we have the time complexity of the
algorithm as O(log n), which is O(k). Hence the algorithm is linear
in terms of its input size.

1.43. Prove that for any constant c > 0, (log n)c = o(n).

Follows from the fact that limn!1
logc

n

n
= 0.

1.44. Show that any exponential function grows faster than any polyno-
mial function by proving that for any constants c and d greater
than 1,

nc = o(dn).

96 Basic Concepts in Algorithmic Analysis

Follows from the fact that limn!1
n
c

dn = 0.

1.45. Consider the following recurrence

f(n) = 4f(n/2) + n for n � 2; f(1) = 1,

where n is assumed to be a power of 2.
(a) Solve the recurrence by expansion.

(b) Solve the recurrence directly by applying Theorem 1.3.

(a) Let n = 2k. Expanding the recurrence, we have

f(n) = 4k + n
k�1X

j=0

2j

= n2 + n
2k � 1

2 � 1

= n2 + n(n� 1)

= 2n2 � n

= ⇥(n2).

(b) f(n) = ⇥(n2).

1.46. Consider the following recurrence

f(n) = 5f(n/3) + n for n � 2; f(1) = 1,

where n is assumed to be a power of 3.
(a) Solve the recurrence by expansion.

(b) Solve the recurrence directly by applying Theorem 1.3.

(a) Let n = 3k. Expanding the recurrence yields

f(n) = 5log3 n + n
k�1X

j=0

✓
5

3

◆j

= nlog3 5 + n
(5/3)k � 1

(5/3) � 1

= nlog3 5 +
5k � n

2/3

Solutions 97

= nlog3 5 +
3

2
(nlog3 5 � n)

=
5

2
nlog3 5 � 3

2
n

= ⇥(nlog3 5).

(b) f(n) = ⇥(nlog3 5).

1.47. Consider the following recurrence

f(n) = 9f(n/3) + n2 for n � 2; f(1) = 1,

where n is assumed to be a power of 3.
(a) Solve the recurrence by expansion.

(b) Solve the recurrence directly by applying Theorem 1.3.

(a) Let n = 3k. Expanding the recurrence, we have

f(n) = 9k + n
k�1X

j=0

✓
9

9

◆j

= nlog3 9 + n2 log3 n

= n2 + n2 log3 n

= ⇥(n2 log n).

(b) f(n) = ⇥(n2 log n).

1.48. Consider the following recurrence

f(n) = 2f(n/4) +
p
n for n � 4; f(n) = 1 if n < 4,

where n is assumed to be of the form 22
k

, k � 0.
(a) Solve the recurrence by expansion.

(b) Solve the recurrence directly by applying Theorem 1.3.

(a) Let n = 4r. Expanding the recurrence, we have

f(n) = 2rf(n/4r) +
r�1X

j=0

p
n

= 2r +
p
n log4 n

=
p
n +

p
n log4 n

98 Basic Concepts in Algorithmic Analysis

= ⇥(
p
n log n).

(b) f(n) = ⇥(
p
n log n).

1.49. Use the substitution method to find an upper bound for the recur-
rence

f(n) = f(bn/2c) + f(b3n/4c) for n � 4; f(n) = 4 if n < 4.

Express the solution using the O-notation.

Let cnx be an upper bound for f(n), that is, f(n)  cnx. Then,
substituting in the recurrence, we obtain

f(n)  c
⇣n

2

⌘x
+ c

✓
3n

4

◆x

.

We want this quantity to be  cnx. Hence,

c
⇣n

2

⌘x
+ c

✓
3n

4

◆x

 cnx.

Simplifying (dividing by cnx) yields
✓

1

2

◆x

+

✓
3

4

◆x

 1,

or

2x + 3x  4x. (1.1)

This inequality is satisfied if x ⇡ 1.51. Hence, f(n) = O(nx) for x
satisfying Eq. 1.1.

1.50. Use the substitution method to find an upper bound for the recur-
rence

f(n) = f(bn/4c) + f(b3n/4c) + n for n � 4; f(n) = 4 if n < 4.

Express the solution using the O-notation.

Let f(n) = cn log n. Then,

f(n)  c
⇣n

4

⌘
log
⇣n

4

⌘
+ c

✓
3n

4

◆
log

✓
3n

4

◆
+ n

Solutions 99

=
⇣ c

4

⌘
n log n +

✓
3c

4

◆
n log n�

⇣cn
4

⌘
⇥ 2

�
✓

3cn

4

◆
log

✓
4

3

◆
+ n

= cn log n� cn� + n,

where � = 1
2 + 3

4 log 4
3 . If we let f(n)  cn log n�cn�+n  cn log n,

then cn� � n or c� � 1. Hence, c � 1
�

= 1
0.81 , which implies

c � 1.23. It follows that f(x) = O(n log n).

1.51. Use the substitution method to find a lower bound for the recur-
rence in Exercise 1.49. Express the solution using the ⌦-notation.

The solution is similar to that of Exercise 1.49. If we reverse in-
equalities in the solution to Exercise 1.49, we obtain f(n) = ⌦(nx)
for all x satisfying 2x + 3x � 4x, e.g. f(n) = ⌦(n1.5).

1.52. Use the substitution method to find a lower bound for the recur-
rence in Exercise 1.50. Express the solution using the ⌦-notation.

The solution is similar to that of Exercise 1.50. So, f(x) =
⌦(n log n).

1.53. Use the substitution method to solve the recurrence

f(n) = 2f(n/2) + n2 for n � 2; f(1) = 1,

where n is assumed to be a power of 2. Express the solution using
the ⇥-notation.

Let f(n) = cn2. Then,

f(n) = 2c
⇣n

2

⌘2
+ n2

=
1

2
cn2 + n2

If we let 1
2cn

2 + n2 = cn2, and solve for c, we obtain c

2 + 1 = c or
c = 2. Hence, f(n) = 2n2 = ⇥(n2).

1.54. Let

f(n) = f(n/2) + n for n � 2; f(1) = 1,

100 Basic Concepts in Algorithmic Analysis

and

g(n) = 2g(n/2) + 1 for n � 2; g(1) = 1,

where n is a power of 2. Is f(n) = g(n)? Prove your answer.

They are equal. f(n) = n + n

2 + n

4 + . . . + 2 + 1, and

g(n) = 1 + 2(1 + 2(1 + 2(. . . 1 + 2(1) . . .)))

= 1 + 2 + 22 + 23 + . . . + 2logn

= n +
n

2
+

n

4
+ . . . + 2 + 1.

1.55. Use the change of variable method to solve the recurrence

f(n) = f(n/2) +
p
n for n � 4; f(n) = 2 if n < 4,

where n is assumed to be of the form 22
k

. Find the asymptotic
behavior of the function f(n).

Since n = 22
k

, n

2 = 22
k�1 and

p
n = 22

k�1

. Hence,

f(22
k

) = f(22
k�1) + 22

k�1

.

Let m = 2k, and define

g(2k) = g(2k � 1) + 22
k�1

, k � 1; g(20) = 2.

Then,

g(m) = g(m� 1) + 2m/2, m � 2; g(1) = 2.

The solution to this recurrence is

g(m) = 2m/2 + 2(m�1)/2 + 2(m�2)/2 + . . . + 22/2 + g(1)

= (
p

2)m + (
p

2)m�1 + (
p

2)m�2 + . . . + (
p

2)2 + 2

=

(
p

2)m+1 � 1p
2 � 1

�
p

2 � 1

!
+ 2

= ⇥((
p

2)m) = ⇥(22
k�1

) = ⇥(
p
n).

Hence, f(n) = ⇥(
p
n).

Solutions 101

1.56. Use the change of variable method to solve the recurrence

f(n) = 2f(
p
n) + n for n � 4; f(n) = 1 if n < 4,

where n is assumed to be of the form 22
k

. Find the asymptotic
behavior of the function f(n).

Since n = 22
k

,
p
n = 22

k�1

. Hence,

f(22
k

) = 2f(22
k�1

) + 22
k

.

Let g(k) = f(22
k

). Then,

g(k) = 2g(k � 1) + 22
k

, k � 1; g(0) = 1.

Let g(k) = 2kh(k). Then,

2kh(k) = 2 ⇥ 2k�1h(k � 1) + 22
k

,

or

h(k) = h(k � 1) + 22
k

/2k, k � 1; h(0) = 1.

The solution to this recurrence is

h(k) =
kX

i=1

22
i

2i
+ 1.

Substituting, we obtain

f(n) = 2kh(k)

= 2k

kX

i=1

22
i

2i
+ 1

!

 2k

kX

i=1

22
k

2k
+ 1

!

= log n

log lognX

i=1

n

log n
+ 1

!

= n log log n + log n.

Hence, f(n) = O(n log log n).

102 Basic Concepts in Algorithmic Analysis

1.57. Prove that the solution to the recurrence

f(n) = 2f(n/2) + g(n) for n � 2; f(1) = 1

is f(n) = O(n) whenever g(n) = o(n). For example, f(n) = O(n)
if g(n) = n1�✏, 0 < ✏ < 1.

Let n = 2k, and assume without loss of generality that g(n) = n✏,
0 < ✏ < 1. By Lemma 1.1,

f(n) =

✓
1 +

2✏

2 � 2✏

◆
n�

✓
2✏

2 � 2✏

◆
n✏.

That is, f(n) = O(n).

Solutions 117

2.10 Solutions

2.1. Write an algorithm to delete an element x, if it exists, from a
doubly-linked list L. Assume that the variable head points to the
first element in the list and the functions pred(y) and next(y) return
the predecessor and successor of node y, respectively.

See Algorithm deletefromlist below.

Algorithm 2.1 deletefromlist

Input: A doubly-linked list L and an element x.

Output: Delete x from L.

1. Search for x. Let p be a pointer to x if it exists, else let p nil
2. if p = nil then exit

3. if p = head then set head next(p) and pred(next(p)) nil
4. else if next(p) = nil then set next(pred(p)) nil
5. else

6. Set next(pred(p)) = next(p)
7. Set pred(next(p)) = pred(p)
8. end if

2.2. Give an algorithm to test whether a list has a repeated element.

Let L be the list, and i and j two pointers. Scan L from left to right,
and for each element scanned L(i), traverse the list using pointer j
starting at next(L(i)). Return true whenever L(i) = L(j).

2.3. Rewrite Algorithm insertionsort so that its input is a doubly
linked list of n elements instead of an array. Will the time com-
plexity change? Is the new algorithm more e�cient?

Algorithm insertionsort using linked lists instead of arrays is
shown below as Algorithm insertionsortlist. In the algorithm,
i and j are pointers to elements in the input list L. The time
complexity is still O(n2). The algorithm is not more e�cient than
Algorithm insertionsort, but it has less element assignments.

2.4. A polynomial of the form p(x) = a1xb1 +a2xb2 + . . .+anxbn , where
b1 > b2 > . . . > bn � 0, can be represented by a linked list in
which each record has three fields for ai, bi and the link to the

118 Data Structures

Algorithm 2.2 insertionsortlist

Input: A list L of n elements.

Output: L sorted in nondecreasing order.

1. i head(L)
2. while next(i) 6= nil
3. i next(i)
4. j i
5. x L(i)
6. Delete x from L.
7. while pred(j) 6= nil and L(pred(j)) > x
8. j pred(j)
9. end while

10. Insert x at L(j)
11. end while

next record. Give an algorithm to add two polynomials using this
representation. What is the running time of your algorithm?

Let the two polynomials be p(x) = a1xb1 + a2xb2 + . . . + anxbn ,
represented by list L1, and q(x) = c1xd1 + c2xd2 + . . . + cnxdm

represented by L2. Scan L1 and L2 in parallel stopping whenever
bi = dj . When bi = dj , append the term eixbi to the output list,
where ei = ai + cj . Also, add aixbi and cjxdj if they do not have
matching terms. The running time is ⇥(n + m), where n and m
are the sizes of L1 and L2, respectively.

2.5. Give the adjacency matrix and adjacency list representations of the
graph shown in Fig. 2.5.

Similar to Fig. 2.3.

2.6. Describe an algorithm to insert and delete edges in the adjacency
list representation for
(a) a directed graph.

(b) an undirected graph.

(a) To insert edge (i, j), go to the pointer head(i), which is the
head of the list corresponding to vertex i, and add the element
consisting of the label for vertex j.

(b) In the case of an undirected graph, repeat the above procedure

Solutions 119

by adding element i in the list corresponding to vertex j.

2.7. Let S1 be a stack containing n elements. Give an algorithm to sort
the elements in S1 so that the smallest element is on top of the
stack after sorting. Assume you are allowed to use another stack
S2 as a temporary storage. What is the time complexity of your
algorithm?

See Exercise 4.34.

2.8. What if you are allowed to use two stacks S2 and S3 as a temporary
storage in Exercise 2.7?

See Exercise 4.35.

2.9. Let G be a directed graph with n vertices and m edges. When is it
the case that the adjacency matrix representation is more e�cient
than the adjacency lists representation? Explain.

The adjacency matrix representation is more e�cient than the ad-
jacency lists representation in the case of dense graphs with number
of edges in the order of ⌦(n2).

2.10. Prove that a graph is bipartite if and only if it has no odd-length
cycles.

Let G be a graph. G is 2-colorable means that the vertices of G
can be colored using two colors such that no two adjacent vertices
have the same color. It is well-known that G is bipartite if and
only if it is 2-colorable. But then the proof is immediate since G is
2-colorable if and only if it has no odd-length cycles.

2.11. Draw the almost-complete binary tree with
(a) 10 nodes.

(b) 19 nodes.

Similar to Fig. 2.8.

120 Data Structures

2.12. Prove Observation 2.1.

By induction on j. For the basis step, the root is the only node at
level 0, and the number of nodes at level 0 is 1  20.
For the induction step, assume the number of nodes on level j � 1
is at most 2j�1. Since each node has a maximum degree of 2,
the maximum number of nodes at level j is 2 times the maximum
number of nodes on level j � 1, or 2 ⇥ 2j�1 = 2j .

2.13. Prove Observation 2.2.

By Exercise 2.12, the number of nodes in a binary tree of height h
is at most

P
h

j=0 2j = 2h+1 � 1.

2.14. Prove Observation 2.4.

Let h be the height of the almost-complete binary tree with n nodes.
Then, 2h  n  2h+1 � 1, or 2h + 1  n + 1  2h+1. Taking logs,
we obtain log(2h + 1)  log(n + 1)  h + 1. Since 2h < 2h + 1, we
obtain h < log(2h+1), so that h < log(2h+1)  log(n+1)  h+1,
or h < log(n + 1)  h + 1. This implies that dlog(n + 1)e = h + 1
or h = dlog(n + 1)e � 1. But dlog(n + 1)e � 1 = blog nc. It follows
that h = blog nc.

2.15. Prove Observation 2.3.

The height of a binary tree with n nodes is minimum when it is a
complete or almost-complete, that is, blog nc (Exercise 2.14). It is
maximum when it is degenerate, that is, of height n� 1.

2.16. Prove Observation 2.5.

Let n and m be the number of nodes and edges in a full binary
tree T , respectively. Think of each edge as having two ends: an
edge top touching the parent, and an edge bottom touching the
child. Then, # edge tops = m = # edge bottoms. The number of
edge bottoms is exactly the number of nodes minus one, since each
node except the root lies at the bottom of exactly one edge. So #
edge bottoms in T = n� 1. Also, each internal node in T is at the
top of exactly two edges. Therefore, we have 2 ⇥ # internal nodes

Solutions 121

= # edge tops. Putting these equalities together, we have

2 ⇥ # internal nodes = # edge tops

= # edge bottoms

= n� 1

= # leaves + # internal nodes � 1.

Consequently, # internal nodes = # leaves - 1.

2.17. Show how to list the elements stored in a binary tree in level order.
For example, in Fig 2.11, the output should be a, b, c, d, e, f, g. Hint:
Use a queue.

a

b

f

d

c

g

e

Fig. 2.11 Exercise 2.17.

This is essentially breadth-first search. After visiting a vertex, visit
its children (if any). The algorithm is shown as Algorithm level-

traversal below. Q is a queue that is initially empty.

Algorithm 2.3 leveltraversal

Input: A tree T rooted at vertex v.

Output: List of vertices in level order.

1. Q {v}
2. while Q 6= {}
3. v Pop(Q)
4. output v
5. for each child w of v
6. Push(w,Q)
7. end for

8. end while

122 Data Structures

2.18. Is a tree a bipartite graph? Prove your answer (see Exercise 2.10).

A tree is a bipartite graph since it has no odd-length cycles.

2.19. Let T be a nonempty binary search tree. Give an algorithm to
(a) return the minimum element stored in T .

(b) return the maximum element stored in T .

(a) See Algorithm minbst below.

Algorithm 2.4 minbst

Input: A binary search tree T .

Output: The minimum element stored in T

1. Let T 0 be the left subtree of T .
2. if T 0 is empty then return the element stored in the root.
3. else return minbst(T 0)

(b) Similar to Algorithm minbst above. Change left to right and
minimum to maximum.

2.20. Let T be a nonempty binary search tree. Give an algorithm to
list all the elements in T in increasing order. What is the time
complexity of your algorithm?

See Algorithm listbst below. The time complexity is ⇥(n).

Algorithm 2.5 listbst

Input: A binary search tree T .

Output: The list of all elements stored in T

1. Let T1 be the left subtree of T and T2 be the right subtree of T .
2. if T1 is not empty then listbst(T1)
3. output the element stored at the root
4. if T2 is not empty then listbst(T2)

2.21. Let T be a nonempty binary search tree. Give an algorithm to
delete an element x from T , if it exists. What is the time complexity
of your algorithm?

Solutions 123

First, search for x, so assume it is found. It is easy to delete x
if it is a leaf or if it has only one child; just change pointers. So,
assume that x has two children. Let y be the predecessor of x, that
is, the largest element among the keys in the left subtree of x. It is
important to note that y cannot have a right child, since otherwise
it would not have the largest key in that subtree. So, interchange x
with y, and delete x, which now has at most one child. Consider,
for instance, the tree shown in Fig. 2.12 (a), which is the left tree
in Fig. 2.9. Fig. 2.12 (b) shows the result of deleting x = 6 from
the tree shown in part (a) of the figure. For the running time, see
Exercise 2.23.

1

3

4

6

8

9

x

y 1

3

4
(b)(a)

8

9

Fig. 2.12 Deletion in a binary search tree.

2.22. Let T be binary search tree. Give an algorithm to insert an element
x in its proper position in T . What is the time complexity of your
algorithm?

First, search for x. If it is found, then the insertion will be aborted,
as there should be no duplicates in the tree. So, assume that x is
not in the tree. In this case, searching for x will end unsuccessfully
at a leaf node, say y. x can then be inserted as a right or left child
of y depending on the value of x relative to y. For the running
time, see Exercise 2.23.

2.23. What is the time complexity of deletion and insertion in a binary
search tree? Explain.

The running time of deletion and insertion in a binary search tree
depends on the shape of the tree. It is proportional to the height of
the tree. If the tree is balanced, then the running time is ⇥(log n).
In the worst case, however, the running time is ⇥(n), as the tree

124 Data Structures

may be degenerate and hence the height is ⌦(n).

2.24. When discussing the time complexity of an operation in a binary
search tree, which of the O and ⇥ notations is more appropriate?
Explain.

The O-notation is more appropriate as discussed in Exercise 2.23.

Solutions 151

3.7 Solutions

3.1. What are the merits and demerits of implementing a priority queue
using an ordered list?

If an ordered list is used, then insertion is expensive, as it may
require searching a large portion of the elements to find the proper
location for insertion; it costs O(n). So, insertion of n elements
takes O(n2) time. Deletion takes O(1) time. Finding the maximum
takes O(1) time.

3.2. What are the costs of insert and delete-max operations of a priority
queue that is implemented as a regular queue.

If a regular queue is used, then insertion takes constant time. How-
ever, finding the largest (or smallest) element is expensive, as this
requires searching the entire queue, that is, O(n) for each search.

3.3. Which of the following arrays are heaps?

(a) 8 6 4 3 2 . (b) 7 . (c) 9 7 5 6 3 .

(d) 9 4 8 3 2 5 7 . (e) 9 4 7 2 1 6 5 3 .

(a) Heap. (b) Heap. (c) Heap
(d) Heap. (e) Not a heap.

3.4. Where do the following element keys reside in a heap?
(a) Second largest key. (b) Third largest key. (c) Minimum key.

a) Second largest key: One of the children of the root, that is,
H[2] or H[3].
(b) Third largest key: Either in second or third levels. That is, in
H[2..7]
(c) Minimum key: One of the leaf nodes. That is, one of
H[bn/2c + 1], H[bn/2c + 2], . . . , H[n].

3.5. Give an e�cient algorithm to test whether a given array A[1..n] is
a heap. What is the time complexity of your algorithm?

Algorithm heap below tests whether an input array A is a heap
in ⇥(n) time. The algorithm searches for an element in the upper
half of the array that is smaller than (one of) its children. If such
an element is found, the array is not a heap.

152 Heaps and the Disjoint Sets Data Structures

Algorithm 3.8 heap

Input: An array A[1..n] of n elements.

Output: true if array A is a heap, and false otherwise.

1. for j 1 to bn/2c
2. if A[2j] > A[j] then return false

3. if 2j + 1  n and A[2j + 1] > A[j] then return false

4. end for

5. return true

3.6. Which heap operation is more costly: insertion or deletion? Jus-
tify your answer. Recall that both operations have the same time
complexity, that is, O(log n).

Deletion is more costly, as it involves the sift-down operation, which
is more costly than sift-up. It requires two comparisons per itera-
tion. Sift-up requires one comparisons per iteration.

3.7. Let H be the heap shown in Fig. 3.1. Show the heap that results
from
(a) deleting the element with key 17.

(b) inserting an element with key 19.

(a) 20 11 9 10 5 4 5 3 7

(b) 20 19 9 10 17 4 5 3 7 5 11

3.8. Show the heap (in both tree and array representation) that results
from deleting the maximum key in the heap shown in Fig. 3.4(e).

Resulting heap is 26 17 13 10 11 8 7 4 3 . The tree is shown
in Fig. 3.9.

3.9. How fast is it possible to find the minimum key in a max-heap of
n elements?

The minimum is stored in one of the leaf nodes. So, dn/2e � 1
comparisons are both su�cient and necessary.

3.10. Prove or disprove the following claim. Let x and y be two elements
in a heap whose keys are positive integers, and let T be the tree
representing that heap. Let hx and hy be the heights of x and y

Solutions 153

26

17 13

10 11 8 7

4 3

Fig. 3.9 A heap for Execise 3.8.

in T . Then, if x is greater than y, hx cannot be less than hy. (See
Sec. 2.5 for the definition of node height).

Not true. Consider the heap 6 5 2 4 3 1 . 4 > 2, but the
height of 4 is less than the height of 2.

3.11. Illustrate the operation of Algorithm makeheap on the array

3 7 2 1 9 8 6 4 .

Similar to the example shown in Fig. 3.4.

3.12. Show the steps of transforming the following array into a heap

1 4 3 2 5 7 6 8 .

Similar to the example shown in Fig. 3.4.

3.13. Let A[1..19] be an array of 19 integers, and suppose we apply Al-
gorithm makeheap on this array.
(a) How many calls to Algorithm sift-down will there be? Ex-

plain.

(b) What is the maximum number of element interchanges in this
case? Explain.

(c) Give an array of 19 elements that requires the above maximum
number of element interchanges.

(a) There are bn/2c = 9 calls to Algorithm sift-down.

154 Heaps and the Disjoint Sets Data Structures

(b) Number of iterations in Algorithm sift-down is at most

2h
hX

i=1

(i/2i) = 24
4X

i=1

(i/2i) = 26,

which in turn is at most the number of element interchanges.
The exact value is given by the sum of the numbers in the table
below, which is 16 (The nodes are numbered left to right, top
to bottom).

Node 9 8 7 6 5 4 3 2 1
Iterations 1 1 1 1 1 2 2 3 4

(c) Let A be the array consisting of the numbers 1, 2, . . . , 19 in
this order. Then, A requires the above maximum number of
element interchanges.

3.14. Show how to use Algorithm heapsort to arrange in increasing
order the integers in the array

4 5 2 9 8 7 1 3 .

The steps are illustrated using the following arrays.
Makeheap: 9 8 7 5 4 2 1 3

Swap: 3 8 7 5 4 2 1 9

Sift-down: 8 5 7 3 4 2 1 9

Swap: 1 5 7 3 4 2 8 9

Sift-down: 7 5 2 3 4 1 8 9

Swap: 1 5 2 3 4 7 8 9

Sift-down: 5 4 2 3 1 7 8 9

Swap: 1 4 2 3 5 7 8 9

Sift-down: 4 3 2 1 5 7 8 9

Swap: 1 3 2 4 5 7 8 9

Sift-down: 3 1 2 4 5 7 8 9

Swap: 2 1 3 4 5 7 8 9

Sift-down: 2 1 3 4 5 7 8 9

Solutions 155

Swap: 1 2 3 4 5 7 8 9

Sorted: 1 2 3 4 5 7 8 9

3.15. Given an array A[1..n] of integers, we can create a heap B[1..n]
from A as follows. Starting from the empty heap, repeatedly insert
the elements of A into B, each time adjusting the current heap,
until B contains all the elements in A. Show that the running time
of this algorithm is ⇥(n log n) in the worst case.

Insertion of the jth element costs ⇥(log j) in the worst case. Hence,
the total number of operations in the worst case is

nX

j=1

c log j = ⇥(n log n).

3.16. Illustrate the operation of the algorithm in Exercise 3.15 on the
array

6 9 2 7 1 8 4 3 .

Insert 6: 6

Insert 9: 9 6

Insert 2: 9 6 2

Insert 7: 9 7 2 6

Insert 1: 9 7 2 6 1

Insert 8: 9 7 8 6 1 2

Insert 4: 9 7 8 6 1 2 4

Insert 3: 9 7 8 6 1 2 4 3

3.17. Explain the behavior of Algorithm heapsort when the input array
is already sorted in
(a) increasing order.

(b) decreasing order.

(a) If the input array is already sorted in increasing order, the
call to Algorithm makeheap costs the maximum number
of element comparisons. After that, the algorithm performs

156 Heaps and the Disjoint Sets Data Structures

⇥(n log n) element comparisons using Algorithm sift-down.
If all elements are identical, the running time is ⇥(n).

(b) If the input array is already sorted in decreasing order, the
call to Algorithm makeheap costs the minimum number of
element comparisons. After that, the algorithm performs
⇥(n log n) element comparisons using Algorithm sift-down.

3.18. Give an example of a binary search tree with the heap property.

If the keys to the left of the root are strictly smaller than the root
and the keys to the right of the root are strictly larger than the
root (as defined in Sec. 2.6.2), then it seems the only heaps that
are also binary search trees are the trees consisting of one element
and two elements. Thus, for example, the tree shown in Fig. 3.10
is a heap and binary search tree.

2

1

Fig. 3.10 A heap and binary search tree.

3.19. Give an algorithm to merge two heaps of the same size into one
heap. What is the time complexity of your algorithm?

Let the two heaps be A and B. Append B to A to form array C
with 2n elements. Next, apply Algorithm makeheap on C. The
time complexity is ⇥(n).

3.20. Compute the minimum and maximum number of element compar-
isons performed by Algorithm heapsort.

First, we compute the maximum number of element comparisons
performed by the for loop in Step 2 of the algorithm. It is easy to
see that the number of comparisons done by Algorithm sift-down

on a heap of size n is at most 2blog nc. Hence, by Eq. A.18 (p.
811), the total number of comparisons performed by the calls to

Solutions 157

Algorithm sift-down is at most

2
nX

j=2

log(j � 1) = 2
n�1X

j=1

log j  2n log n� 2n log e.

By Theorem 3.1, the number of comparisons done by Algorithm
makeheap is < 4n. Hence, the overall number of comparisons is
at most

2nblog nc + (4 � 2 log e)n  2n log n� 1.11n.

To find the minimum number of element comparisons, note that
there are at least 1 ⇥ (n � 1) sift-down iterations. Therefore, the
total number of comparisons done by the sift-down algorithm is at
least 2(n � 1). By Theorem 3.1, the number of comparisons done
by Algorithm makeheap is > n� 1. Hence, the overall number of
comparisons is at least 3(n� 1).

3.21. A d-heap is a generalization of the binary heap discussed in this
chapter. It is represented by an almost-complete d-ary rooted tree
for some d � 2. Rewrite Algorithm sift-up for the case of d-heaps.
What is its time complexity?

The algorithm is shown in Procedure siftup-d below. Note that in
a d-ary heap A, the parent of A[i] is A[p], where p = b(i� 1)/dc+1.
The time complexity is O(logd n).

Algorithm siftup-d
Input: An array H[1..n] and an index i between 1 and n.

Output: H[i] is moved up, if necessary, so that it is not larger than its parent.

1. done false

2. if i = 1 then exit {node i is the root}
3. repeat

4. p b(i� 1)/dc+ 1
5. if key(H[i]) > key(H[p]) then interchange H[i] and H[p]
6. else done true

7. i p
8. until i = 1 or done

158 Heaps and the Disjoint Sets Data Structures

3.22. Rewrite Algorithm sift-down for the case of d-heaps (see Exer-
cise 3.21). What is its time complexity measured in terms of d
and n?

The algorithm is shown in Procedure siftdown-d below. Note
that in a d-ary heap A, the kth child of A[i] is A[q], where q =
di�(d�1)+k. The repeat loop is iterated logd n times, and in each
iteration, the for loop is executed d times to find the maximum key.
Hence, the time complexity is O(d logd n).

Algorithm siftdown-d
Input: An array H[1..n] and an index i between 1 and n.

Output: H[i] is percolated down, if necessary, so that it is not smaller
than its children.

1. done false

2. if di� (d� 1) + 1 > n then exit {node i is a leaf}
3. repeat

4. q di� (d� 1)
5. k 1 {Set q to first child}
6. for j 2 to d
7. if q + j  n and key(H[q + j]) > key(H[q + k]) then k j
8. end for

9. q q + k
10. if key(H[i]) < key(H[q]) then interchange H[i] and H[q]
11. else done true

12. end if

13. i q
14. until di� (d� 1) + 1 > n or done

3.23. Give a sequence of n union and find operations that results in a
tree of height ⇥(log n) using only the heuristic of union by rank.
Assume the set of elements is {1, 2, . . . , n}.

Assume for simplicity that n is a power of 2. Use the sequence of
unions generated by Procedure union2 shown below, followed by
any sequence of finds.

3.24. Give a sequence of n union and find operations that requires
⇥(n log n) time using only the heuristic of union by rank. Assume
the set of elements is {1, 2, . . . , n}.

Solutions 159

Algorithm 3.9 union2

1. if n = 2 then union(1, 2) and exit

2. Recursively perform the union of {1, 2, . . . , n/2}.
3. Recursively perform the union of {n/2 + 1, n/2 + 2, . . . , n}.
4. union(1, n/2 + 1)

Use the sequence of unions generated by Procedure union2 shown
in the previous exercise, followed by n copies of find(x), where x
is any leaf in the resulting tree.

3.25. What are the ranks of nodes 3, 4 and 8 in Fig. 3.8(f)?

rank(3) = 0, rank(4) = 2, and rank(8) = 3.

3.26. Let T be a tree resulting from a sequence of unions and finds using
both the heuristics of union by rank and path compression, and let
x be a node in T . Prove that rank(x) is an upper bound on the
height of x.

The height of a node x either decreases or does not change after
path compression, while its recorded rank does not change. This
means that rank(x) is an upper bound on the height of x.

3.27. Let � be a sequence of union and find instructions in which all the
unions occur before the finds. Show that the running time is linear
if both the heuristics of union by rank and path compression are
used.

The only operation which may take more than constant time is the
find operation. Let u be a node in tree T with root x, and consider
the instruction find(u). Let the path from u to x in T be u =
v0, v1, . . . , vk = x before path compression, where k � 2. So, using
direct analysis, this find operation costs O(k) time. However, using
amortization, it is possible to show that it costs O(1) amortized
time. Charge two time units corresponding to vk�1 and vk to the
find instruction itself. Let w be any node on the path from u
to x other than vk�1 and vk. Let makeset be the operation of
creating the first singleton set consisting of one node. Charge one
time unit to the first makeset(w) instruction that resulted in a tree
consisting of w only. Thus, the cost of the find is distributed among

160 Heaps and the Disjoint Sets Data Structures

the makeset operations, and each makeset is assigned at most one
time unit. After path compression, all nodes on the path from u
to x will be directly connected to x, and the makeset operations
for these nodes will not be charged again. Any subsequent find for
these nodes will cost constant time.

3.28. Another heuristic that is similar to union by rank is the weight-
balancing rule. In this heuristic, the action of the operation
union(x, y) is to let the root of the tree with fewer nodes point
to the root of the tree with a larger number of nodes. If both trees
have the same number of nodes, then let y be the parent of x.
Compare this heuristic with the union by rank heuristic.

The two heuristics are similar; the height of a tree after a sequence
of unions is O(log n) with either heuristics. It is more natural to
compare the heights of the two trees than to compare their sizes.
However, it would be di�cult to update the height of a tree after
applying the path compression rule; the size of the tree remains
unaltered.

3.29. Prove that the weight-balancing rule described in Exercise 3.28
guarantees that the resulting tree is of height O(log n).

We prove by induction on n that the height of the resulting tree
is at most blog nc, where n is the number of nodes in the resulting
tree. For the base case, when n = 1, the height is 0 = blog 1c. Now,
suppose n > 1 and that any tree constructed by a sequence of union
instructions and containing m nodes, for m < n, has height at most
blogmc. Consider a tree T with n nodes, and height h, that was
constructed from two trees T1 with n1 nodes and height h1, and
T2 with n2 nodes and height h2. Suppose that the root of T2 was
attached to the root of T1. By the induction hypothesis, h1 
blog n1c, and h2  blog n2c. The height of T is max{h1, h2 + 1}.
Clearly, h1  blog nc. Since n2  n/2, h2  blog nc � 1. It follows
that h  blog nc.

3.30. Let T be a tree resulting from a sequence of unions and finds using
the heuristics of union by rank and path compression. Let x be the
root of T and y a leaf node in T . Prove that the ranks of the nodes
on the path from y to x form a strictly increasing sequence.

Solutions 161

By Observation 3.1, for any node y, rank(p(y)) � rank(y) + 1.
Moreover, before path compression, p(y) was an ancestor of p, and
hence the rank of p(y) either increases or does not change after
path compression.

3.31. Prove the observation that if node v is in rank group g > 0, then
v can be moved and charged at most F (g)� F (g� 1) times before
it acquires a parent in a higher group.

The rank of the parent of v will change in subsequent find in-
structions and, in the worst case, it will assume all the values in
F (g� 1), F (g� 1) + 1, F (g� 1) + 2, . . . , F (g)� 1 before it acquires
a higher group. The number of these ranks is F (g) � F (g � 1).

3.32. Another possibility for the representation of disjoint sets is by using
linked lists. Each set is represented by a linked list, where the set
representative is the first element in the list. Each element in the
list has a pointer to the set representative. Initially, one list is
created for each element. The union of two sets is implemented by
merging the two sets. Suppose two sets S1 represented by list L1

and S2 represented by list L2 are to be merged. If the first element
in L1 is to be used as the name of the resulting set, then the pointer
to the set name at each element in L2 must be changed so that it
points to the first element in L1.
(a) Explain how to improve this representation so that each find

operation takes O(1) time.

(b) Show that the total cost of performing n� 1 unions is ⇥(n2)
in the worst case.

(a) No improvement needed; each find operation takes O(1) time.

(b) Consider the sequence of n� 1 unions:
union(2, 1), union(3, 2), union(4, 3),. . . , union(n, n� 1).
Executing these unions will cost ⇥(n2), assuming that the first
element in L1 is to be used as the name of the resulting set,

3.33. (Refer to Exercise 3.32). Show that if when performing the union
of two sets, the first element in the list with a larger number of
elements is always chosen as the name of the new set, then the
total cost of performing n� 1 unions becomes O(n log n).

162

Let x be any element. Each time a list L containing x is merged
with another list, the size of the new list containing x is at least
doubled. Consider the number of times the pointer in item x to
the set representative is changed. Since the size of the new set
containing x is at least doubled after each merge, the number of
these changes is O(log n). If we charge the change of representative
to x itself, the total number of charges is n⇥O(log n) = O(n log n).
Hence, the total cost is O(n log n).

Solutions 191

4.11 Solutions

4.1. Give a recursive algorithm that computes the nth Fibonacci number
fn defined by

f1 = f2 = 1; fn = fn�1 + fn�2 for n � 3.

The recursive algorithm is shown as Algorithm Fibonacci below.

Algorithm 4.13 Fibonacci

Input: A positive integer n.

Output: fn.

1. fib(n)

Algorithm fib(n).

1. if n  2 then return 1
2. else return fib(n� 1) + fib(n� 2)

4.2. Give a recursive version of Algorithm selectionsort.

The recursive version is shown as Algorithm selectionsortrec

below.

Algorithm 4.14 selectionsortrec

Input: An array A[1..n] of n elements.

Output: A[1..n] sorted in nondecreasing order.

1. sort(1)

Algorithm sort(i) {Sort A[i..n]}
1. if i < n then

2. k i
3. for j i + 1 to n
4. if A[j] < A[k] then k j
5. end for

6. if k 6= i then interchange A[i] and A[k]
7. sort(i + 1)
8. end if

192 Induction

4.3. Give a recursive version of Algorithm insertionsort.

The recursive version is shown as Algorithm insertionsortrec

below.

Algorithm 4.15 insertionsortrec

Input: An array A[1..n] of n elements.

Output: A[1..n] sorted in nondecreasing order.

1. sort(n)

Algorithm sort(i) {Sort A[1..i]}
1. if i > 1 then

2. x A[i]
3. sort(i� 1)
4. j i� 1
5. while j > 0 and A[j] > x
6. A[j + 1] A[j]
7. j j � 1
8. end while

9. A[j + 1] x
10. end if

4.4. Give a recursive version of Algorithm bubblesort given in Exer-
cise 1.17.

The recursive version is shown as Algorithm bubblesortrec be-
low.

4.5. Derive a linear time and iterative version of Algorithm majority.
Do not compute the median.

The algorithm is shown as Algorithm majorityiterative below.

4.6. Prove Observation 4.1.

Let k and k0 be the number of occurrences of the candidate element
before and after deleting two elements, respectively. Suppose that
the candidate is a majority element before the deletion. Then,
k > n/2. Note that k0 � k � 1. Hence,

k0 � k � 1 >
n

2
� 1 =

n� 2

2
,

Solutions 193

Algorithm 4.16 bubblesortrec

Input: An array A[1..n] of n elements.

Output: A[1..n] sorted in nondecreasing order.

1. sort(1)

Algorithm sort(i) {Sort A[i..n]}
1. if i  n� 1 then

2. for j n downto i + 1
3. if A[j] < A[j � 1] then
4. interchange A[j] and A[j � 1]
5. end if

6. end for

7. sort(i + 1)
8. end if

Algorithm 4.17 majorityiterative

Input: An array A[1..n] of n elements.

Output: The majority element if it exists; otherwise none.

1. j 1; c A[1]; count 1
2. while j < n
3. while j < n and count > 0
4. j j + 1
5. if A[j] = c then count count + 1
6. else count count � 1
7. end while

8. if j < n then

9. j j + 1
10. c = A[j]
11. count 1
12. end if

13. end while

14. count 0
15. for j 1 to n
16. if A[j] = c then count count + 1
17. end for

18. if count > bn/2c then return c
19. else return none

that is, k0 > n�2
2 . It follows that the candidate is also a majority

after the deletion of the two di↵erent elements.

194 Induction

4.7. Prove or disprove the following claim. If in Step 7 of Algorithm
candidate in Algorithm majority j = n but count = 0 then c is
the majority element.

False. Consider the case when n is even and the elements are dis-
tinct. Then, when j = n, count = 0 and there is no majority
element.

4.8. Prove or disprove the following claim. If in Step 7 of Algorithm
candidate in Algorithm majority j = n and count > 0 then c is
the majority element.

False. Consider the case when n is odd and the elements are dis-
tinct. Then, when j = n, count = 1 > 0 and there is no majority
element.

4.9. Use Algorithm exprec to compute
(a) 25. (b) 27. (c) 35. (d) 57.

(a) 25 = 2(22)2 = 2((21)2)2. (b), (c) and (d) are similar.

4.10. Solve Exercise 4.9 using Algorithm exp instead of Algorithm ex-

prec.
(a) n = 5 = 101 in binary. Hence,
1! 2 ⇤ 1 = 2! 22 = 4! 2 ⇤ 42 = 32.
(b), (c) and (d) are similar.

4.11. Let A be a square matrix. Explain how to compute An e�ciently,
where n is a positive integer. How many matrix multiplications did
you use?

Use the same algorithm as that for integer multiplication. This
results in ⇥(log n) matrix multiplications.

4.12. Let A be a square matrix. Explain how to compute A+A2+. . .+An

e�ciently, where n is a positive integer. Use the ⇥-notation to
express the number of matrix multiplications.
(a) Using integer exponentiation. Assume each power is evaluated

separately.

(b) Using Horner’s rule.

Solutions 195

(a) Evaluate each power separately and add all powers. Number
of multiplications is

P
n

j=1 ⇥(log j) = ⇥(n log n).

(b) Using Horner’s rule, compute A(1 + A(1 + (. . . A(1) . . .))).
There are ⇥(n) matrix multiplications.

4.13. Express the time complexity of Algorithm radixsort in terms of
n when the input consists of n positive integers in the interval
(a) [1..n].

(b) [1..n2].

(c) [1..2n].

The number of iterations is ⇥(logm), where m is the range of
values.
(a) [1..n]: ⇥(n log n).

(b) [1..n2]: ⇥(n log n2) = ⇥(n log n).

(c) [1..2n]: ⇥(n log 2n) = ⇥(n2).

4.14. Let A[1..n] be an array of positive integers in the interval [1..n!].
Which sorting algorithm do you think is faster: bottomupsort

or radixsort? (See Sec. 1.7).

The number of iterations in Algorithm radixsort is ⇥(log n!) =
⇥(n log n), and hence the running time of radixsort becomes
⇥(n2 log n). This is much more than the running time of Algo-
rithm bottomupsort, which is ⇥(n log n).

4.15. What is the time complexity of Algorithm radixsort if arrays are
used instead of linked lists? Explain.

If the array sizes are changed dynamically starting from zero, then
there should be no noticeable di↵erence. However, if the array sizes
are predetermined, the space complexity may be too high, as the
size of each array may be as large as n.

4.16. A sorting method known as bucket sort works as follows. Let A[1..n]
be a sequence of n numbers within a reasonable range, say all num-
bers are between 1 and m, where m is not too large compared to n.
The numbers are distributed into k buckets, with the first bucket
containing those numbers between 1 and bm/kc, the second bucket

196 Induction

containing those numbers between bm/kc+1 to b2m/kc, and so on.
The numbers in each bucket are then sorted using another sorting
algorithm, say Algorithm insertionsort. Analyze the running
time of the algorithm.

Assume that the elements are uniformly distributed over the buck-
ets so that each bucket has n/k elements. The initial phase of
partitioning the items into k buckets takes ⇥(n) operations in a
reasonable implementation. Using Algorithm insertionsort, the

sorting step takes ⇥
⇣
k
�
n

k

�2⌘
time. The final phase of combining

buckets may require ⇥(n) time in the worst case. Hence, the total

running time is ⇥
⇣

n
2

k

⌘
. If, for example, k is set to n/10, the algo-

rithm will run in linear time. However, if the input is not uniformly
distributed, then all numbers may fall into one bucket in the worst
case, which may result in a running time of ⇥(n2).

4.17. Instead of using another sorting algorithm in Exercies 4.16, design
a recursive version of bucket sort that recursively sorts the numbers
in each bucket. What is the major disadvantage of this recursive
version?

Instead of using another sorting algorithm, bucket sort would sim-
ply call itself recursively on each bucket. However, there is a lot of
bookkeeping involved due to the huge number of recursive calls to
create smaller and smaller buckets. This makes recursion imprac-
tical in bucket sort .

4.18. A sorting algorithm is called stable if the order of equal elements is
preserved after sorting. Which of the following sorting algorithms
are stable?
(a)selectionsort (b)insertionsort (c)bubblesort
(d)bottomupsort (e)heapsort (f)radixsort.

(a) selectionsort: Stable.

(b) insertionsort: Stable.

(c) bubblesort: Stable.

(d) bottomupsort: Stable. Consider the number 1 that occurs
on the left and right, that is, 11 to the left and 12 to the right.
Then, Algorithm merge will put them in the correct order

Solutions 197

as 11, 12.

(e) heapsort is not stable. To see this, consider sorting the input
11, 12. Then, 11 and 12 will be interchanged by the algorithm.

(f) radixsort: Stable. Elements will be inserted into lists in
correct order.

4.19. Let f(x) = a0 + a1x + a2x2 + . . . + an�1xn�1 be a polynomial of
degree n� 1, where n is a power of 2. Design a recursive algorithm
to implement Horner’s rule to evaluate f(x) at the point x = b.
What is the time complexity of your algorithm?

The algorithm is shown below as Algorithm polynomial. It recur-
sively computes y = a1 + a2x+ a3x2 + . . .+ an�1xn�2, and returns
a0 + yx evaluated at the point x = b. Its time complexity is ⇥(n).

Algorithm 4.18 polynomial

Input: An array A[1..n] of n elements corresponding to a0, a1, . . . , an�1 and x.

Output: a0 + a1x + . . . + an�1x
n�1

1. p = poly(A, b, 1)
2. return p

Algorithm poly(A, x, low)

1. if low = n then return A[low]
2. else

3. y poly[A, x, low + 1]
4. w A[low] + xy
5. return w
6. end if

4.20. Modify Algorithm subsets1 in Sec. 4.6 for generating the subsets
of numbers so that it outputs only m-subsets, that is, subsets of
size m.

The algorithm is shown as Algorithm subsets4 below. Note that
the statement size = size + j acts like the conditional statement
if j = 1 then size = size + 1.

4.21. Modify Algorithm subsets1 in Sec. 4.6 for generating the subsets
of numbers so that it outputs all subsets containing 1 before all

198 Induction

Algorithm 4.19 subsets4

Input: Two positive integers n and m.

Output: Subsets of the numbers 1, 2, . . . , n of size m.

1. for j 1 to n
2. v[j] 0
3. end for

4. sub4(1)

Algorithm sub4(k)

1. if k  n then

2. if k = 1 then size = 0
3. for j 0 to 1
4. v[k] j
5. size = size + j
6. sub4(k + 1)
7. if k = n and size = m then

8. for i 1 to n if v[i] = 1 then output i
9. if v[k] = 1 then v[k] = 0

10. size = size� j
11. end for

12. end if

subsets without 1.

Change the for statement
“for j 0 to 1” to “for j 1 downto 0”.
In this case, the output for n = 3 would be
{1, 2, 3}, {1, 2}, {1, 3}, {1}, {2, 3}, {2}, {3}, {}.

4.22. Do Exercise 4.20 for Algorithm subsets2.

Change the statement
if k = n then for j 1 to i output A[j]
to
if k = n and i = m then for j 1 to i output A[j],
and include m in the input.

4.23. Do Exercise 4.21 for Algorithm subsets2.

The modified algorithm is shown below as Algorithm subsets5. In
this case, the output for n = 3 is
{1, 2, 3}, {1, 2}, {1, 3}, {1}, {2, 3}, {2}, {3}, {}.

Solutions 199

Algorithm 4.20 subsets5

Input: A positive integer n.

Output: All subsets of the numbers 1, 2, . . . , n.

1. i 0
2. sub5(1)

Algorithm sub5(k)

1. if k  n then

2. i i + 1
3. A[i] k
4. sub5(k + 1)
5. if k = n then for j 1 to i output A[j]
6. i i� 1
7. sub5(k + 1)
8. if k = n then for j 1 to i output A[j]
9. end if

4.24. Explain why in Algorithm subsets2 in Sec. 4.6, the statement
i i� 1 is necessary.

If this statement is deleted, A[i] will be prepended to all subsequent
subsets. For example, when n = 2, the output will be

{}, {2}, {2, 1}, {2, 1, 2} instead of {}, {2}, {1}, {1, 2}.

4.25. Carefully explain why in Algorithm permutations1 when P [j]
and P [m] are interchanged before the recursive call, they must be
interchanged back after the recursive call.

Before the recursive call, they are interchanged so that P [m..n] =
j,m + 1, . . . , n. Therefore, they must be interchanged back after
the recursive call so that P [m..n] = m,m + 1, . . . , n. This is done
so that the permutations of the elements {m,m + 1, . . . , n} are
generated correctly. For example, if they are not interchanged back,
the output when n = 3 will be

{1, 2, 3}, {1, 3, 2}, {3, 1, 2}, {3, 2, 1}, {1, 2, 3}, {1, 3, 2}.

4.26. Carefully explain why in Algorithm permutations2 P [j] must be
reset to 0 after the recursive call.

If it is not reset to 0, only one permutation will be printed, since

200 Induction

there are no free positions. For example, if it is not reset to 0 and
n = 4, the output will consist of the permutation {4, 3, 2, 1} only.

4.27. Carefully explain why in Algorithm permutations2, when Pro-
cedure perm2 is invoked by the call perm2(m) with m > 0, the
array P contains exactly m zeros, and hence the recursive call
perm2(m� 1) will be executed exactly m times.

Before Procedure perm2 is invoked with m�1, the number of zeros
is reduced by 1. After this call is completed, the number of zeros is
increased by 1. Since initially the number of zeros is n, the number
of zeros during the call perm2(m) is exactly m.

4.28. Modify Algorithm permutations2 so that the permutations of
the numbers 1, 2, . . . , n are generated in a reverse order to that
produced by Algorithm permutations2.

Change the for loop statement to: for j n downto 1.

4.29. Let A[1..n] be a sorted array of n integers, and x an integer. Design
a recursive O(n) time algorithm to determine whether there are two
elements in A, if any, whose sum is exactly x.

The algorithm is shown below as Algorithm sumrec.

Algorithm 4.21 sumrec

Input: An array A[1..n] of n integers, and an integer x.

Output: Two integers in A whose sum is x.

1. sum(A, x)

Algorithm sum(A, x)

1. if |A| = 2, then if A[1] + A[2] = x then return (A[1], A[2])
else return (1,1)

2. y = A[1] + A[n]
3. if y = x then return (A[1], A[n])
4. else if y > x then return sum(A[1..n� 1], x)
5. else return sum(A[2..n], x)

4.30. Convert the algorithm in Exercise 4.29 into an iterative algorithm.

The algorithm is shown below as Algorithm sumiterative.

Solutions 201

Algorithm 4.22 sumiterative

Input: An array A[1..n] of n integers, and an integer x.

Output: Two integers in A whose sum is x.

1. low = 1; high = n
2. while low < high
3. if high � low = 1, then if A[low] + A[high] = x

then return (A[low], A[high])
else return (1,1)

4. y = A[low] + A[high]
5. if y = x then return (A[low], A[high])
6. else if y > x then high high � 1
7. else low low + 1
8. end while

4.31. Let a and b be two positive integers. The greatest common divisor
of a and b, denoted by gcd(a, b), is the largest integer that divides
both a and b. Derive a recursive algorithm to compute gcd(a, b).
Hint: If c divides a and b, then c divides their di↵erence.

The recursive algorithm is shown as Algorithm euclidrec below.
See also Exercise 1.41.

Algorithm 4.23 euclidrec

Input: Two positive integers a and b.

Output: gcd(a, b).

1. gcd(a, b)

Algorithm gcd(a, b).

1. r a mod b
2. if r = 0 return b
3. else return gcd(b, r)

4.32. Derive the running time of the algorithm in Exercise 4.31. Note
that the running time is in terms of the size of the input, which is
the number of digits in max{a, b}.

See Exercise 1.41.

4.33. Convert the algorithm in Exercise 4.31 into an iterative algorithm.

202 Induction

An e�cient iterative algorithm for computing the gcd of two num-
bers was given in Exercise 1.41.

See Exercise 1.41.

4.34. Use induction to solve Exercise 2.7.

Let stack S1 contain the input, and let S2 be a temporary stack
that is initially empty. Suppose we move the minimum element
from S1 to S2, and recursively sort the rest of the elements in the
input stack. By induction, the algorithm will sort the rest of the
elements and put them on top of the minimum in the temporary
stack S2. Therefore, the algorithm will sort all elements in the
input stack.
This implies the following algorithm to sort the numbers. Prepare
an empty stack S2. While input stack S1 is not empty do the
following: (1) Pop an element x from S1. (2) While stack S2 is not
empty and its top is greater than x, pop from S2 and push into S1.
(3) Push x into S2. At the end, the sorted numbers are in stack S2.
The details are shown in Algorithm stacksorting below. After x
is set to the minimum, all elements in S2 are popped and pushed
back into S1, and x is pushed into S2. At this point, S2 contains
the minimum, and S1 contains the rest, and the remaining elements
are sorted recursively.
The running time is O(n2), as there are O(n2) stack operations,
as can be verified by considering an input that is sorted in reverse
order.

4.35. Use induction to solve Exercise 2.8.

Assume for simplicity that all elements are distinct. (1) Move all
items from stack S1 to stack S2, store maximum value found in x.
(2) Move all items from stack S2 to stack S1, except x, which is
moved to S3 instead. (3) Repeat until both S1 and S2 are empty.
The time complexity is ⇥(n2).

Solutions 203

Algorithm 4.24 stacksorting

Input: An array A[1..n] of n numbers in stack S1.

Output: A sorted in ascending order.

1. Initialize S2 = {}.
2. while S1 6= {}
3. x pop(S1)
4. while top of stack S2 � x and S2 6= {}
5. y pop(S2)
6. push(S1, y)
7. end while

8. push(S2, x)
9. end while

10. return S2

Solutions 253

5.16 Solutions

5.1. Give a divide-and-conquer algorithm that returns a pair (x, y)
where x is the largest number and y is the the second largest num-
ber in an array of n numbers. Derive the time complexity of your
algorithm.

Algorithm second1 below finds the largest and second largest.
Assuming n is a power of 2, the number of comparisons is governed
by the following recurrence relation.

C(n) =

⇢
1 if n = 2
2C(n/2) + 2 if n > 2.

This recurrence solves to C(n) = (3n/2) � 2.

Algorithm 5.11 second1

Input: An array A[1..n] of n integers, where n is a power of 2.

Output: (x, y):the largest and second largest in A.

1. (x, y) second(1, n)
2. return (x, y)

Algorithm second(low , high)

1. if high � low = 1 then

2. x max{A[low], A[high]}
3. y min{A[low], A[high]}
4. return (x, y)
5. else

6. mid b(low + high)/2c
7. (x1, y1) second(low ,mid)
8. (x2, y2) second(mid + 1, high)
9. if x1 � x2 then

10. return (x1,max{x2, y1})
11. else

12. return (x2,max{x1, y2})
13. end if

14. end if

5.2. Repeat Execise 5.1 for finding the largest and second largest ele-
ments using n + log n� 2 comparisons. Hint: See Sec. 11.3.4.2.

Algorithm second2 below first finds the maximum x and a list R

254 Divide and Conquer

of candidates for second largest. The list R is computed as follows.
Let (x, P) be the maximum and list of candidates in the left half,
and (y,Q) be the maximum and list of candidates in the right half.
If x � y, then Q is discarded, and y is appended to P , which is
returned as the set of candidates. On the other hand, if x < y,
then P is discarded, and x is appended to Q, which is returned as
the set of candidates.
Assuming n is a power of 2, the number of comparisons for finding
the pair (x,R) is governed by the following recurrence relation.

C(n) =

⇢
1 if n = 2
2C(n/2) + 1 if n > 2.

This recurrence solves to C(n) = n� 1. Finding the second maxi-
mum in R takes |R| = log n� 1 additional comparisons for a total
of n� 1 + log n� 1 = n + log n� 2 comparisons.

Algorithm 5.12 second2

Input: An array A[1..n] of n integers, where n is a power of 2.

Output: (x, y):the largest and second largest in A.

1. (x,R) max(1, n)
2. y maxR
3. return (x, y)

Algorithm max(low , high)

1. if high � low = 1 then

2. x max{A[low], A[high]}
3. y min{A[low], A[high]}
4. return (x, {y})
5. else

6. mid b(low + high)/2c
7. (x, P) max(low ,mid)
8. (y,Q) max(mid + 1, high)
9. if x � y then

10. Append y to P
11. return (x, P)
12. else

13. Append x to Q
14. return (y,Q)
15. end if

16. end if

Solutions 255

5.3. Modify Algorithm minmax so that it works when n is not a power
of 2. Is the number of comparisons performed by the new algorithm
b3n/2 � 2c even if n is not a power of 2? Prove your answer.

The modified algorithm is shown below as Algorithm minmax2. Its
number of comparisons is given by the recurrence:

C(n) =

8
<

:

0 if n = 1
1 if n = 2
C(bn/2c) + C(dn/2e) + 2 if n > 2.

The solution to this recurrence is C(n) = 3n/2 � 2 if n is a power
of 2. Thus, more than b3n/2 � 2c comparisons may be needed if n
is not a power of 2. For example, C(3) = 3, C(6) = 8, etc. (See
Exercise 5.4 for the case when n is not necessarily a power of 2).

Algorithm 5.13 minmax2

Input: An array A[1..n] of n integers.

Output: (x, y):the minimum and maximum integers in A.

1. minmax(1, n)

Algorithm minmax(low , high)

1. if high = low then return (A[low], A[low])
2. else if high � low = 1 then

3. if A[low] < A[high] then return (A[low], A[high])
4. else return (A[high], A[low])
5. end if

6. else

7. mid b(low + high)/2c
8. (x1, y1) minmax(low ,mid)
9. (x2, y2) minmax(mid + 1, high)

10. x min{x1, x2}
11. y max{y1, y2}
12. return (x, y)
13. end if

5.4. Derive an iterative minimax algorithm that finds both the mini-
mum and maximum in a set of n elements using only 3n/2 � 2
comparisons, where n is a power of 2.

Let x = min{A[1], . . . , A[n� 2]} and y = max{A[1], . . . , A[n� 2]}.
To compute the minimum and maximum in A, first compare A[n�

256 Divide and Conquer

1] with A[n]. Let the minimum of these two numbers be p, and
the maximum be q. Update x to be the minimum of x and p, and
update y to be the maximum of y and q. This leads to Algorithm
minmax3 shown below. There are three element comparisons in
each iteration of the while loop plus one comparison before the
loop. The total is 3(n�2)/2+1 = 3n/2�2 comparisons for even n
(even if it is not a power of 2).

Algorithm 5.14 minmax3

Input: An array A[1..n] of n integers, where n is a power of 2.

Output: (x, y):the minimum and maximum integers in A.

1. x min{A[1], A[2]}
2. y max{A[1], A[2]}
3. j 2
4. while j < n
5. p min{A[j + 1], A[j + 2]}
6. q max{A[j + 1], A[j + 2]}
7. x min{x, p}
8. y max{y, q}
9. j j + 2

10. end while

5.5. Modify Algorithm binarysearchrec so that it searches for two
keys. In other words, given an array A[1..n] of n elements and two
elements x1 and x2, the algorithm should return two integers k1
and k2 representing the positions of x1 and x2, respectively, in A.

Let x = min{x1, x2} and y = max{x1, x2}. First, search for x.
Let k be the result of searching for x, that is, x = A[k] if x is in A,
or 0 otherwise. Next, search for y in A[k+ 1..n]. The running time
is still O(log n).

5.6. Design a search algorithm that divides a sorted array into one
third and two thirds instead of two halves as in Algorithm bina-

rysearchrec. Analyze the time complexity of the algorithm.

The algorithm is shown as Algorithm binarysearch2 below.
Each iteration reduces the search range by a factor of at least 3/2.
Hence, the running time is O(log3/2 n) = O(log n).

Solutions 257

Algorithm 5.15 binarysearch2

Input: An array A[1..n] of n elements sorted in nondecreasing order and
an element x.

Output: j if x = A[j], 1  j  n, and 0 otherwise.

1. binarysearch(1, n)

Algorithm binarysearch(low , high)

1. if low > high then return 0
2. else

3. d b(high � low)/3c
4. mid low + d
5. if x = A[mid] then return mid
6. else if x < A[mid] then return binarysearch(low ,mid � 1)
7. else return binarysearch(mid + 1, high)
8. end if

5.7. Modify Algorithm binarysearchrec so that it divides the sorted
array into three equal parts instead of two as in Algorithm bina-

rysearchrec. In each iteration, the algorithm should test the
element x to be searched for against two entries in the array. An-
alyze the time complexity of the algorithm.

The algorithm is shown as Algorithm binarysearch3 below.
Each iteration reduces the search range by a factor of at least 3.
Hence, the running time is O(log3 n) = O(log n).

5.8. Use mathematical induction to prove the correctness of Algorithm
mergesort. Assume that Algorithm merge works correctly.

Proof. By induction on n, the size of the array.
Basis step: If n = 1, then there is only one element, which is sorted.
Induction step: Suppose the hypothesis holds for all arrays with less
than n elements. We show that it also holds for n. By induction, the
two halves will be sorted, and by correctness of Algorithm merge,
the whole array will be sorted. Thus, the hypothesis holds for n,
and hence the algorithm sorts its input correctly. ⇤

5.9. It was shown in Sec. 5.3 that algorithms bottomupsort and
mergesort are very similar. Give an example of an array of num-
bers in which

258 Divide and Conquer

Algorithm 5.16 binarysearch3

Input: An array A[1..n] of n elements sorted in nondecreasing order and
an element x.

Output: j if x = A[j], 1  j  n, and 0 otherwise.

1. binarysearch(1, n)

Algorithm binarysearch(low , high)

1. if low > high then return 0
2. else

3. d b(high � low)/3c
4. mid1 low + d
5. mid2 low + 2d
6. if x = A[mid1] then return mid1
7. else if x = A[mid2] then return mid2
8. else if x < A[mid1] then return binarysearch(low ,mid1� 1)
9. else if x > A[mid2] then return binarysearch(mid2 + 1, high))

10. else return binarysearch(mid1 + 1,mid2� 1)
11. end if

(a) Algorithm bottomupsort and Algorithm mergesort per-
form the same number of element comparisons.

(b) Algorithm bottomupsort performs more element compar-
isons than Algorithm mergesort.

(c) Algorithm bottomupsort performs fewer element compar-
isons than Algorithm mergesort.

(a) Consider any input of n elements, where n is a power of 2.

(b) Consider input 1 2 3 . Algorithm bottomupsort first
compares 1 and 2, then it merges 1, 2 with 3 using two com-
parisons for a total of three comparisons.
On the other hand, Algorithm mergesort first compares 2
and 3, then it merges 1 with 2, 3 using one comparison for a
total of two comparisons.

(c) Consider input 3 2 1 . Algorithm bottomupsort first
compares 3 and 2, then it merges 2, 3 with 1 using one com-
parison for a total of two comparisons.
On the other hand, Algorithm mergesort first compares 2
and 1, then it merges 3 with 1, 2 using two comparisons for a
total of three comparisons.

Solutions 259

5.10. Consider the following modification of Algorithm mergesort. The
algorithm first divides the input array A[low ..high] into four parts
A1, A2, A3 and A4 instead of two. It then sorts each part recur-
sively, and finally merges the four sorted parts to obtain the original
array in sorted order. Assume for simplicity that n is a power of 4.
(a) Write out the modified algorithm.

(b) Analyze its running time.

(a) The modified algorithm is shown below as Algorithm merge-

sort2.

Algorithm 5.17 mergesort2

Input: An array A[1..n] of n elements.

Output: A[1..n] sorted in nondecreasing order.

1. mergesort(A, 1, n)

Algorithm mergesort(A, low , high)

1. if low < high then

2. d b(high � low)/4c.
3. mergesort(A, low , low + d)
4. mergesort(A, low + d + 1, low + 2d)
5. mergesort(A, low + 2d + 1, low + 3d)
6. mergesort(A, low + 3d + 1, high)
7. merge (A, low , low + d, low + 2d)
8. merge (A, low + 2d + 1, low + 3d, high)
9. merge (A, low , low + 2d, high)

10. end if

(b) The running time of the algorithm is given by the recurrence

T (n) =

⇢
c if n = 1
4T (n/4) + bn if n � 2,

whose solution is T (n) = ⇥(n log4 n) = ⇥(n log n).

5.11. What will be the running time of the modified algorithm in Ex-
ercise 5.10 if the input array is divided into k parts instead of 4?
Here, k is a fixed positive integer greater than 1.

260 Divide and Conquer

The running time of the algorithm is given by the recurrence

T (n) =

⇢
c if n = 1
kT (n/k) + bn if n � 2,

whose solution is T (n) = ⇥(n logk n) = ⇥(n log n) since k is fixed.

5.12. Consider the following modification to Algorithm mergesort. We
apply the algorithm on the input array A[1..n] and continue the re-
cursive calls until the size of a subinstance becomes relatively small,
say m or less. At this point, we switch to Algorithm insertion-

sort and apply it on the small instance. So, the first test of the
modified algorithm will look like the following:
if high � low + 1  m then insertionsort(A[low ..high]).
What is the largest value of m in terms of n such that the running
time of the modified algorithm will still be ⇥(n log n)? You may
assume for simplicity that n is a power of 2.

The maximum number of comparisons done by the algorithm is
given by the recurrence

C(n) =

⇢
m(m� 1)/2 if n = m
2C(n/2) + n� 1 if n > m

If we expand this recurrence i times, we obtain

C(n) = 2i ⇥ C(n/2i) + in� (2i � 1)  2i ⇥ C(n/2i) + kn,

where k = log n. Letting m = n/2i yields

C(n)  n

m

m(m� 1)

2
+ kn  cnm + n log n,

for some constant c. It follows that m  b log n for some constant b.

5.13. Use Algorithm select to find the kth smallest element in the list
of numbers given in Example 5.1, where
(a) k = 1. (b) k = 9. (c) k = 17. (d) k = 22. (e) k = 25.

Similar to Example 5.1.

Solutions 261

5.14. What will happen if in Algorithm select the true median of the
elements is chosen as the pivot instead of the median of medians?
Explain.

The algorithm will go into infinite loop.

5.15. Let A[1..105] be a sorted array of 105 integers. Suppose we run
Algorithm select to find the 17th element in A. How many recur-
sive calls to Algorithm select in Algorithm select will there be?
Explain your answer clearly.

Assume without loss of generality that A consists of the numbers
1, 2, . . . , 105. In the first iteration, there are 10 ⇥ 5 + 3 = 53 ele-
ments less than or equal to the median of medians mm. It is at
index 53, which means that mm coincides with the true median. In
the second iteration, the number of remaining elements is 53, and
there are 4⇥5+3 = 23 elements less than or equal to the median of
medians. After the second iteration, the number of remaining ele-
ments is  44, and hence they will be sorted and the 17th smallest
element will be returned.

5.16. Explain the behavior of Algorithm select if the input array is al-
ready sorted in nondecreasing order. Compare that to the behavior
of Algorithm binarysearchrec.

Assume without loss of generality that A consists of the numbers
1, 2, . . . , n. There are two cases. First, if bn/5c is odd. In this
case, the number of remaining elements is 5bbn/5c/2c + 3. Sec-
ondly, if bn/5c is even, then the number of remaining elements is
5bbn/5c/2 � 1c + 3. In both cases, he number of remaining ele-
ments is approximately n/2. This is similar to Algorithm binary-

searchrec.

5.17. In Algorithm select, groups of size 5 are sorted in each invocation
of the algorithm. This means that finding an algorithm that sorts
a group of size 5 that uses the fewest number of comparisons is
important. Show that it is possible to sort five elements using only
seven comparisons.

Assume that the numbers are a, b, c, d, e. Compare a to b and c
to d. Suppose without loss of generality that a < b and c < d.

262 Divide and Conquer

Compare a to c. Suppose without loss of generality that a < c.
Insert e into ha, c, di. This can be done with two comparisons.
Insert b into {e, c, d}. This can be done with two comparisons. The
total number of comparisons is seven.

5.18. One reason that Algorithm select is ine�cient is that it does
not make full use of the comparisons that it makes: After it dis-
cards one portion of the elements, it starts on the subproblem from
scratch. Give a precise count of the number of comparisons the
algorithm performs when presented with n elements. Note that it
is possible to sort five elements using only seven comparisons (see
Exercise 5.17).

We count the number of comparisons C(n) as follows. Step 4 takes
at most 7bn/5c  7n/5 comparisons. Step 6 takes n comparisons.
Hence, substituting in the recurrence

C(n) 
⇢

c if n < 44
C(bn/5c) + C(b3n/4c) + cn if n � 44,

for c = 12/5 yields the inequality C(n)  cn

1�1/5�3/4 = 20cn, where
c = 12/5, that is, C(n)  48n.
It can be shown using more detailed analysis of the algorithm that
C(n)  16n. Empirical results show that C(n)  10n.

5.19. Based on the number of comparisons counted in Exercise 5.18, de-
termine for what values of n one should use a straightforward sort-
ing method and extract the kth element directly.

We will assume that the number of comparisons is C(n)  10n.
Since sorting costs at most n log n comparisons, setting n log n 
10n gives log n  10 or n  210 = 1024. Thus, sorting should be
used for roughly n  1024.

5.20. Let g denote the size of each group in Algorithm select for some
positive integer g � 3. Derive the running time of the algorithm
in terms of g. What happens when g is too large compared to the
value used in the algorithm, namely 5?

We count the number of comparisons C(n) as follows. Step 4 costs
at most (n/g)g log g = n log g comparisons. Step 6 takes n com-

Solutions 263

parisons. Assume g � 5, since for g = 3, 4, the running time is
⇥(n log n) (see Exercise 5.21). Hence, the recurrence becomes

C(n) 
⇢

c if n < 44
C(bn/5c) + C(b3n/4c) + (log g + 1)n if n � 44,

Substituting in the inequality C(n)  cn

1�1/5�3/4 = 20cn for c =
log g + 1, yields C(n)  20(log g + 1)n. Thus, when g is too large,
the multiplicative constant explodes.

5.21. Which of the following group sizes 3, 4, 5, 7, 9, 11 guarantees ⇥(n)
worst case performance for Algorithm select? Prove your answer.
(See Exercise 5.20).

Only 5, 7, 9, 11 guarantees ⇥(n) worst case performance. To see
this, note that the recurrence for the running time is

T (n) 
⇢

c if n < d
T (bn/gc) + T (b3n/4c) + cn if n � d,

for some constant d, where g is the group size. It follows by Theo-
rem 1.5, that the solution to this recurrence is T (n) = ⇥(n) if and
only if 1/g + 3/4 < 1 or g > 4.

5.22. Rewrite Algorithm select using Algorithm split to partition the
input array. Assume for simplicity that all input elements are dis-
tinct. What is the advantage of the modified algorithm?

The modified algorithm is shown as Algorithm select2 below. An
advantage of the modified algorithm is that it uses less space.

5.23. Let A[1..n] and B[1..n] be two arrays of distinct integers sorted in
increasing order. Give an e�cient algorithm to find the median of
the 2n elements in both A and B. What is the running time of
your algorithm?

Assume for simplicity that n is a power of 2. Let a = A[n/2] and
b = B[n/2]. If a  b, then any element in A[1..n/2] is less than n/2
elements in A and n/2 elements in B and cannot be the median,
so all elements in A[1..n/2] are discarded. Also, any element in
B[n/2 + 1..n] is greater than n/2 elements in B and n/2 elements
in A and cannot be the median, so all elements in B[n/2+1..n] are

264 Divide and Conquer

Algorithm 5.18 select2

Input: An array A[1..n] of n elements and an integer k, 1  k  n.

Output: The kth smallest element in A.

1. select(A, low , high, k)

Algorithm select(A, low , high, k)

1. n high � low + 1
2. if n < 44 then sort A and return A[k]
3. Let q = bn/5c. Divide A into q groups of 5 elements each. If 5 does

not divide p, then discard the remaining elements.
4. Sort each of the q groups individually and extract its median. Let

the set of medians be M .
5. mm select(M, 1, q, dq/2e) {mm is the median of medians}
6. Interchange mm with A[low]
7. split(A[low ..high], w) {w is the new position of mm}
8. case

k = w: return mm
k < w: high w � 1
k > w: low w + 1; k k - w

9. end case

10. sselect(A, low , high, k)

discarded. The case b  a is symmetrical. The algorithm is shown
as Algorithm median below. Its time complexity is ⇥(log n).

Algorithm 5.19 median

Input: Two arrays A[1..n] and B[1..n] of n elements each, where n is a power
of 2.

Output: The median element in A [B.

1. median(A,B, n)

Algorithm median(A,B, n)

1. if n = 1 then return min{A[1], B[1]} and exit

2. a = A[n/2]; b = B[n/2]
3. if a  b then

4. Discard A[1..n/2] and B[n/2 + 1..n]
5. else

6. Discard B[1..n/2] and A[n/2 + 1..n]
7. end if

8. median(A,B, n/2)

Solutions 265

5.24. Make use of the algorithm obtained in Exercise 5.23 to device a
divide-and-conquer algorithm for finding the median in an array
A[1..n]. What is the time complexity of your algorithm? (Hint:
Make use of Algorithm mergesort).

5.25. Consider the problem of finding all the first k smallest ele-
ments in an array A[1..n] of n distinct elements. Here, k is not
constant, i.e., it is part of the input. We can solve this problem
easily by sorting the elements and returning A[1..k]. This, however,
costs O(n log n) time. Give a ⇥(n) time algorithm for this problem.
Note that running Algorithm select k times costs ⇥(kn) = O(n2)
time, as k is not constant.

First, find the kth smallest element, call it x. Next, scan the array A
and return all elements less than or equal to x.

5.26. Let f(n) be the number of element interchanges that Algorithm
split makes when presented with the input array A[1..n] excluding
interchanging A[low] with A[i].
(a) For what input arrays A[1..n] is f(n) = 0?

(b) What is the maximum value of f(n)? Explain when this max-
imum is achieved?

(a) f(n) = 0 if A[low] is the minimum or the maximum, e.g.
1 2 3 4 and 4 1 2 3 .

(b) The maximum value of f(n) is n�2. It is achieved when A[low]
is the second maximum and A[low + 1] is the maximum, e.g.
3 4 1 2 .

5.27. Modify Algorithm split so that it partitions the elements in
A[low ..high] around x, where x is the median of {A[low],
A[b(low + high)/2c], A[high]}. Will this improve the running time
of Algorithm quicksort? Explain.

Find the median and exchange it with A[low] before Algorithm
split starts. This will improve the running time of Algorithm
quicksort substantially.

5.28. Algorithm split is used to partition an array A[low ..high] around
A[low]. Another algorithm to achieve the same result works as

266 Divide and Conquer

follows. The algorithm has two pointers i and j. Initially, i = low
and j = high. Let the pivot be x = A[low]. The pointers i and
j move from left to right and from right to left, respectively, until
it is found that A[i] > x and A[j]  x. At this point A[i] and
A[j] are interchanged. This process continues until i � j. Write
out the complete algorithm. What is the number of comparisons
performed by the algorithm?

See Algorithm partition below. The number of comparisons is
n� 1.

Algorithm 5.20 partition

Input: An array of elements A[low ..high].

Output: (1)A with its elements rearranged, if necessary, as described above.
(2) w, the new position of the splitting element A[low].

1. i low + 1; j high; x A[low]
2. while i < j
3. while A[i]  x
4. i i + 1
5. end while

6. while A[j] > x
7. j j � 1
8. end while

9. if i < j then interchange A[i] and A[j]
10. end while

11. A[low] = A[j]; A[j] = x
12. w j
13. return A and w

5.29. Let A[1..n] be a sequence of integers. Give an algorithm to reorder
the elements in A so that all negative integers are positioned to
the left of all nonnegative integers. Your algorithm should run in
time ⇥(n).

See Algorithm partition2 below.

5.30. Convert Algorithm quickselect into an iterative algorithm.

The iterative version is shown as Algorithm quickselectitera-

tive below. Algorithm split is the partitioning algorithm pre-
sented in Sec. 5.6.1.

Solutions 267

Algorithm 5.21 partition2

Input: An array of elements A[low ..high].

Output: A with its elements rearranged, if necessary, as described above.

1. i low ; j high
2. while i < j
3. while A[i]  0
4. i i + 1
5. end while

6. while A[j] > 0
7. j j � 1
8. end while

9. if i < j then interchange A[i] and A[j]
10. end while

11. return A

Algorithm 5.22 quickselectiterative

Input: An array A[1..n] of n elements and an integer k, 1  k  n.

Output: The kth smallest element in A.

1. low = 1; high = n
2. while low  high
3. split(A[low ..high], w) {w is the new position of A[low]}
4. case

k = w : return A[w]
k < w : high = w � 1
k > w : low = w + 1

5. end case

6. end while

5.31. Show that the work space needed by Algorithm quicksort varies
between ⇥(log n) and ⇥(n). What is its average space complexity?

The space complexity is ⇥(1), except for the space needed for
the stack (see Exrcise 5.33). In the best case, it is given by
the recurrence S(n) = S(n/2) + c, or S(n) = ⇥(log n). In the
worst case, it is given by the recurrence S(n) = S(n � 1) + c, or
S(n) = ⇥(n). The average space complexity is given by the recur-
rence S(n) = S(n/2) + c, or S(n) = ⇥(log n).

5.32. Explain the behavior of Algorithm quicksort when the input ar-

268 Divide and Conquer

ray A[1..n] consists of n identical elements.

The behavior of Algorithm quicksort in this case is that of sorted
input, that is, the running time is ⇥(n2).

5.33. Give an iterative version of Algorithm quicksort.

The iterative version is shown as Algorithm quicksortiterative

below. In the algorithm, St is the stack, and push and pop are
the push and pop operations on the stack. Algorithm split is the
partitioning algorithm presented in Sec. 5.6.1.

Algorithm 5.23 quicksortiterative

Input: An array A[1..n] of n elements.

Output: The elements in A sorted in nondecreasing order.

1. low = 1; high = n
2. push (1, n)
3. while St 6= {} {St is the stack}
4. pop (low, high)
5. if low < high then

6. split(A[low ..high], w) {w is the new position of A[low]}
7. If high > w + 1 then push (w + 1, high)
8. If w � 1 > low then push (low , w � 1)
9. end if

10. return A

5.34. Which of the following sorting algorithms are stable (see Exer-
cise 4.18)?
(a)heapsort (b)mergesort (c)quicksort.

We will use subscripts to denote the order of equal numbers.
(a) heapsort is not stable. To see this, consider sorting the input

11, 12. Then, 11 and 12 will be interchanged by the algorithm.

(b) mergesort is stable. Consider the number 1 that occurs on
the left and right, that is, 11 to the left and 12 to the right.
Then, Algorithm merge will put them in the correct order as
11, 12.

(c) quicksort is not stable. To see this, consider sorting the in-
put 11, 12. Then, 11 and 12 will be interchanged by Algorithm
split.

Solutions 269

5.35. A sorting algorithm is called adaptive if its running time depends
not only on the number of elements n, but also on their order.
Which of the following sorting algorithms are adaptive?
(a)selectionsort (b)insertionsort (c)bubblesort (d)heapsort
(e)bottomupsort (f)mergesort (g)quicksort (h)radixsort.

insertionsort, heapsort, bottomupsort, mergesort and
quicksort are adaptive. The others are not adaptive.

5.36. Let x = a + bi and y = c + di be two complex numbers. The
product xy can easily be calculated using four multiplications, that
is, xy = (ac� bd) + (ad+ bc)i. Devise a method for computing the
product xy using only three multiplications.

Compute (ad + bc) from ad + bc = (a + b)(c + d) � ac� bd.

5.37. Explain how to modify Strassen’s algorithm for matrix multiplica-
tion so that it can also be used with matrices whose size is not
necessarily a power of 2.

There are some approaches. The easiest approach is to add extra
rows and columns of 0’s to make dimensions powers of 2.

5.38. Let f(x) = a0 + a1x + a2x2 + . . . + an�1xn�1 be a polynomial of
degree n� 1, where n is a power of 2. Design a divide and conquer
algorithm to implement Horner’s rule to evaluate f(x) at the point
x = b. What is the time complexity of your algorithm?

The algorithm is shown below as Algorithm polynomial. It re-
cursively computes y = a0 + a1x + a2x2 + . . . + an/2�1x

n/2�1 and
z = an/2 + an/2+1x + . . . + an�1xn/2�1, and returns two values:
f(x) = y + xn/2z, and xn. Its time complexity is ⇥(n).

5.39. Give a divide and conquer algorithm to solve the 1-dimensional
closest pair problem: Given a set of n points on the x-axix, deter-
mine the two points that are closest to each other. Your algorithm
should run in O(n log n) time.

The algorithm is shown below as Algorithm closestpaironed. It
is assumed that n is a power of 2.

270 Divide and Conquer

Algorithm 5.24 polynomial

Input: An array A[1..n] of n elements corresponding to a0, a1, . . . , an�1 and x.

Output: a0 + a1x + . . . + an�1x
n�1

1. p poly(A, 1, n, b)
2. return p

Algorithm poly(A, low , high, x)

1. if low = high then return (A[low], x)
2. else

3. mid b(low + high)/2c
4. (y, x0) poly(A, low ,mid , x)
5. (z, x1) poly(A,mid + 1, high, x)
6. w y + x1z
7. return (w, x2

1)
8. end if

Algorithm 5.25 closestpaironed

Input: A set S of n points on the x-axix.

Output: The minimum separation realized by two points in S.

1. � cp(S)
2. return �

Algorithm cp(S)

1. if |S| = 2 then return |x1 � x2|
2. Let m be the median of S
3. Partition S into S1 of points  m and S2 of points > m
4. Recursively find the minimum separation �1 in S1 and the minimum

separation �2 in S2

5. Let x1 = maxS1 and x2 = minS2

6. Set �3 = x2 � x1

7. Let � = min{�1, �2, �3}
8. return �

5.40. Suppose we modify the algorithm for the closest pair problem so
that not each point in T is compared with seven points in T . In-
stead, every point to the left of the vertical line L is compared with
a number of points to its right.

(a) What are the necessary modifications to the algorithm?

(b) How many points to the right of L have to be compared with

Solutions 271

every point to its left? Explain.

(a) Every point to the left of the vertical line L is compared with
a fixed number of points to its right.

(b) Six points to the right of L are compared with every point to
its left. See Fig. 5.11.

L

Fig. 5.11 Exrcise 5.40.

5.41. Rewrite the algorithm for the closest pair problem without mak-
ing use of Algorithm mergesort. Instead, use a presorting step
in which the input is sorted by y-coordinates at the start of the
algorithm once and for all. The time complexity of your algorithm
should be ⇥(n log n).

The algorithm is shown below as Algorithm closestpairs2.

5.42. Modify Algorithm dominance in Sec. 5.12 to solve the more gen-
eral case, in which some points may lie on the same vertical line.

The solution to the case where some points may lie on the same
vertical line is as follows. If in the current recursive call all points
have the same x-coordinate, then none of them dominate the other,
so set count(p) to zero for all of these points. This includes the case
where there is only one point. The detailed algorithm is shown
below as Algorithm dominance2.

5.43. Give a divide and conquer algorithm for the dominance problem in
Sec. 5.12, which starts by dividing the input into four parts instead

272 Divide and Conquer

Algorithm 5.26 closestpairs2

Input: A set S of n points in the plane.

Output: The minimum separation realized by two points in S.

1. Sort The points in S in nondecreasing order of their x-coordinates.
2. Y The points in S sorted in nondecreasing order of their y-

coordinates.
3. � cp(1, n)
4. return �

Algorithm cp(low , high)

1. if high � low + 1  3 then compute � by a straightforward method.
2. else

3. mid b(low + high)/2c
4. x0 x(S[mid])
5. �l cp(low ,mid)
6. �r cp(mid + 1, high)
7. � min{�l, �r}
8. k 0
9. for i 1 to |Y | {Extract T from Y }

10. if |x(Y [i])� x0|  � then

11. k k + 1
12. T [k] Y [i]
13. end if

14. end for {k is the size of T}
15. �0 2� {Initialize �0 to any number greater than �}
16. for i 1 to k � 1 {Compute �0}
17. for j i + 1 to min{i + 7, k}
18. if d(T [i], T [j]) < �0 then �0 d(T [i], T [j])
19. end for

20. end for

21. � min{�, �0}
22. end if

23. return �

of two (see Fig 5.12).

The algorithm is similar to Algorithm dominance discussed in
Sec. 5.12, except for the following. All points in part D are dom-
inated by points in part B. None of the points in part A are
dominated by points in part C, and vice-versa. Some of the points
in part A are dominated by points in part B. Some of the points
in part D are dominated by points in parts A and C. Some of the
points in part C are dominated by points in part B.

Solutions 273

Algorithm 5.27 dominance2

Input: A set S of n points in the plane.

Output: The number of points in S dominated by each point p.

1. Sort the points in S in nondecreasing order of their x-coordinates.
2. dom(S)
3. return count(p) for all points p 2 S

Algorithm dom(S)

1. Let L be the vertical line passing by the median point.
2. Let Sm be the points in S that are lying on L, that is, having the

same x-coordinate as L
3. if Sm = S then

4. for all points p 2 Sm count(p) 0
5. else

6. Divide S into two parts Sl and Sr such that the points
in Sl are on or to the left of L, and all points in Sr are to the
right of L.

7. dom(Sl); dom(Sr)
8. d 0
9. Sweep a horizontal line bottom-up starting from the point

in S with lowest y-coordinate:
10. for each point p 2 S
11. if p 2 Sl then d d + 1
12. else count(p) = count(p) + d
13. end if

14. end if

5.44. Design a divide-and-conquer algorithm to determine whether two
given binary trees T1 and T2 are identical.

See Algorithm identicalbt below.

5.45. Design a divide-and-conquer algorithm that computes the height of
a binary tree.

See Algorithm height below.

274 Divide and Conquer

A B

CD

Fig. 5.12 Exercise 5.43.

Algorithm 5.28 identicalbt

Input: Two binary trees: T1 and T2.

Output: true if the two trees are identical, and false otherwise

1. if T1 is empty then if T2 is empty
then return true else return false

2. Let T3 and T4 be the left subtrees of T1 and T2.
3. Let T5 and T6 be the right subtrees of T1 and T2.
4. return identicalbt(T3, T4) and identicalbt(T5, T6)

Algorithm 5.29 height

Input: A binary tree T .

Output: The height of T

1. if T consists of one node then return 0 and exit

2. Let T1 and T2 be the left and right subtrees of T .
3. return 1 + max{height(T1), height(T2)}

Solutions 299

6.10 Solutions

6.1. Prove Observation 6.1.

Let A = a1, a2, . . . , ai and B = b1, b2, . . . , bj , and let C =
c1, c2, . . . , ck be a longest common subsequence of length l.
(a) It follows that ck = ai = bj , for otherwise ai = bj can be ap-
pended to C resulting in a common subsequence of length > l. Now,
suppose there is an LCS of a1, a2, . . . , ai�1 and b1, b2, . . . , bj�1,
say D, of length > l� 1. Then, by appending ai to D, there would
be an LCS of A and B of length > l, which is a contradiction.
(b) Suppose that ai 6= bj , and L[i, j] > L[i, j � 1]. We show that
L[i, j] = L[i � 1, j]. Since L[i, j] > L[i, j � 1], it must be the case
that ck = bj , which is not equal to ai. But then, L[i, j] = L[i�1, j].

6.2. Show how to modify Algorithm lcs so that it outputs a longest
common subsequence as well.

The modified algorithm is shown as Algorithm lcs2 below. The
algorithm returns the pair (L[n,m], s), in which s is the desired
subsequence.

6.3. Show how to modify Algorithm lcs so that it requires only
⇥(min{m,n}) space.

Use two rows or two columns. Assume without loss of generality
that m  n. Then, we may use two rows: the current row and the
previous row. This is shown in Algorithm lcs3 below. Note that
the work space needed is now 2⇥m = ⇥(m). The other case where
n  m is symmetrical.

6.4. Give a parenthesized expression for the optimal order of multiplying
the five matrices in Example 6.4.

The parenthesized expression is (M1(M2(M3(M4 M5)))). For de-
tails of its derivation, see the solution to Exercise 6.7.

6.5. Consider applying Algorithm matchain on the following five ma-
trices:

M1 : 2⇥ 3, M2 : 3⇥ 6, M3 : 6⇥ 4, M4 : 4⇥ 2, M5 : 2⇥ 7.

300 Dynamic Programming

Algorithm 6.5 lcs2

Input: Two strings A and B of lengths n and m, over an alphabet ⌃.

Output: The length of the longest common subsequence of A and B,
and a subsequence of maximum length.

1. for i 0 to n
2. L[i, 0] 0
3. end for

4. for j 0 to m
5. L[0, j] 0
6. end for

7. k 0
8. for i 1 to n
9. for j 1 to m

10. if ai = bj then

11. L[i, j] L[i� 1, j � 1] + 1
12. if L[i, j] > k then

13. k k + 1
14. s[k] ai

15. end if

16. else L[i, j] max{L[i, j � 1], L[i� 1, j]}
17. end if

18. end for

19. end for

20. return (L[n,m], s)

(a) Find the minimum number of scalar multiplications needed to
multiply the five matrices, (that is C[1, 5]).

(b) Give a parenthesized expression for the order in which this
optimal number of multiplications is achieved.

We apply the algorithm in the solution to Exercise 6.7.

(a) The array r is given by r = 5, 10, 4, 6, 10, 2. The cost matrix
and the sequence matrix (� matrix) are given by

0

BBBB@

0 36 84 96 124
0 0 72 84 126
0 0 0 48 132
0 0 0 0 56
0 0 0 0 0

1

CCCCA
,

0

BBBB@

�1 1 2 1 4
0 �1 2 2 4
0 0 �1 3 4
0 0 0 �1 4
0 0 0 0 �1

1

CCCCA
.

(b) The output of Procedure matrixorder is the parenthesized ex-

Solutions 301

Algorithm 6.6 lcs3

Input: Two strings A and B of lengths n and m, over an alphabet ⌃.

Output: The length of the longest common subsequence of A and B.

1. L[1, 0] 0; L[2, 0] 0
2. for j 0 to m
3. L[1, j] 0
4. end for

5. for i 1 to n
6. for j 1 to m
7. if ai = bj then L[2, j] L[1, j � 1] + 1
8. else L[2, j] max{L[2, j � 1], L[1, j]}
9. end if

10. end for

11. for j 0 to m
12. L[1, j] L[2, j]
13. end for

14. end for

15. return L[2,m]

pression ((1(2(3 4)))5), which corresponds to the multiplica-
tion ((M1(M2(M3M4)))M5).

6.6. Give an example of three matrices in which one order of their mul-
tiplication costs at least 100 times the other order.

Let the three matrices be A,B and C with dimensions a⇥ b, b⇥ c
and c ⇥ d. There are two possible multiplications: A(BC), which
costs abd+ bcd, and (AB)C, which costs abc+acd. Set abd+ bcd �
100(abc+acd), and let a = c = 1. Then, 2bd � 100b+100d. Setting
b = d = 104 yields 2⇥ 108 = 2bd � 100b + 100d = 2⇥ 106. Hence,
the desired dimensions are a = c = 1 and b = d = 104.

6.7. Show how to modify the matrix chain multiplication algorithm so
that it also produces the order of multiplications as well.

The modified algorithm is shown as Algorithm matchain2 be-
low. In the modified algorithm, Step 18 has been added. k
splits the chain of matrices into two sequences M1M2 . . .Mk�1

and MkMk+1 . . .Mn such that the optimal product consists of
performing the two products M 0 = M1M2 . . .Mk�1 and M 00 =
MkMk+1 . . .Mn, and then the multiplication M 0M 00. Proce-

302 Dynamic Programming

dure matrixorder in the algorithm outputs the parenthesized ex-
pression.

Algorithm 6.7 matchain2

Input: An array r[1..n + 1] of positive integers corresponding to the
dimensions of a chain of n matrices, where r[1..n] are the number
of rows in the n matrices and r[n+1] is the number of columns in Mn.

Output: The least number of scalar multiplications required to multiply
the n matrices, and the order of their multiplication.

1. for i 1 to n {Fill in diagonal d0}
2. C[i, i] 0
3. end for

4. for i 1 to n
5. for j 1 to n
6. if i = j then �[i, j] � 1 else �[i, j] 0
7. end for

8. end for

9. for d 1 to n� 1 {Fill in diagonals d1 to dn�1}
10. for i 1 to n� d {Fill in entries in diagonal di}
11. j i + d
12. comment: The next three lines compute C[i, j]

13. C[i, j] 1
14. for k i + 1 to j
15. temp C[i, k � 1] + C[k, j] + r[i]r[k]r[j + 1]
16. if temp < C[i, j] then
17. C[i, j] temp
18. �[i, j] = k � 1
19. end if

20. end for

21. end for

22. end for

23. output C[1, n]
24. order {}
25. output matrixorder(1, n)

Algorithm matrixorder(low , high)

1. if low = high then

2. Append low to order and return order
3. Append ”(” to order
4. s �[low , high]
5. matrixorder(low , s)
6. matrixorder(s + 1, high)
7. Append ”)” to order
8. return order
9. end if

Solutions 303

Now, we apply the above algorithm on the instance in Example 6.4.
In this example, we have

M1 : 5⇥10, M2 : 10⇥4, M3 : 4⇥6, M4 : 6⇥10, M5 : 10⇥2.

Thus, the array r is given by r = 5, 10, 4, 6, 10, 2. The cost matrix
and the sequence matrix (� matrix) are given by

0

BBBB@

0 200 320 620 348
0 0 240 640 248
0 0 0 240 168
0 0 0 0 120
0 0 0 0 0

1

CCCCA
,

0

BBBB@

�1 1 2 3 1
0 �1 2 2 2
0 0 �1 3 3
0 0 0 �1 4
0 0 0 0 �1

1

CCCCA
.

The output of Procedure matrixorder is the parenthesized ex-
pression (1(2(3(4 5)))), which corresponds to the multiplication
(M1(M2(M3(M4 M5)))).
As another example, consider the chain of matrices:

M1 : 10⇥15,M2 : 15⇥5,M3 : 5⇥15,M4 : 15⇥10,M5 : 10⇥20,M6 : 20⇥10.

Thus, the array r is given by r = 10, 15, 5, 15, 10, 20, 10. The cost
matrix and the sequence matrix (� matrix) are given by

0

BBBBBBB@

0 15750 7875 9375 11875 15125
0 0 2625 4375 7125 10500
0 0 0 750 2500 5375
0 0 0 0 1000 3500
0 0 0 0 0 5000
0 0 0 0 0 0

1

CCCCCCCA

,

0

BBBBBBB@

�1 1 2 2 2 2
0 �1 2 2 2 2
0 0 �1 3 4 5
0 0 0 �1 4 4
0 0 0 0 �1 5
0 0 0 0 0 �1

1

CCCCCCCA

.

The output of Procedure matrixorder is the parenthesized expres-
sion ((1 2)(((3 4)5)6)) which corresponds to the multiplication
((M1M2)(((M3M4)M5)M6)).

6.8. Give an example of a directed graph that contains some edges with
negative costs and yet the all-pairs shortest path algorithm gives
the correct distances.

Let G be any directed graph with no negative cycles.

304 Dynamic Programming

6.9. Give an example of a directed graph that contains some edges with
negative costs such that the all-pairs shortest path algorithm fails
to give the correct distances.

Let G be any directed graph with at least one negative cycle.

6.10. Show how to modify the all-pairs shortest path algorithm so that
it detects negative-weight cycles (A negative-weight cycle is a cycle
whose total length is negative).

After running Algorithm floyd, check whether there is a negative
number in the diagonal of the output matrix. There is a negative
cycle if and only if there is such a number.

6.11. Prove Observation 6.2.

In an optimal packing of u1, u2, . . . , ui, either ui is in the opti-
mal packing or not. If it is, then the rest of the knapsack of size
j � si must constitute an optimal packing of (some of) the items
in u1, u2, . . . , ui�1. If it is not, then the knapsack of size j must
constitute an optimal packing of the items in u1, u2, . . . , ui�1.

6.12. Solve the following instance of the knapsack problem. There are
four items of sizes 3, 5, 7, 8 and 9 and values 4, 6, 7, 9 and 10, and
the knapsack capacity is 22.

The values matrix is given by
0

BBBBBBB@

0 0
0 0 4
0 0 4 4 6 6 6 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
0 0 4 4 6 6 7 10 10 11 11 13 13 13 17 17 17 17 17 17 17 17
0 0 4 4 6 6 7 10 10 11 13 13 15 15 17 19 19 20 20 22 22 22
0 0 4 4 6 6 7 10 10 11 13 14 15 16 17 19 20 20 21 23 23 25

1

CCCCCCCA

.

The packed items are 2, 4 and 5 of sizes 5, 8 and 9. The total value
is 25.

6.13. Explain what would happen when running the knapsack algorithm
on an input in which one item has negative size.

In this case, the statement:
if si  j then V [i, j] max{V [i, j], V [i� 1, j � si] + vi}

Solutions 305

will fail to execute, as there will be a reference outside the rectan-
gular array V .

6.14. Show how to modify Algorithm knapsack so that it requires only
⇥(C) space, where C is the knapsack capacity.

Use two rows: the current row and the previous row. This is shown
in Algorithm knapsack2 below. Note that the work space needed
is now 2⇥ C = ⇥(C).

Algorithm 6.8 knapsack2

Input: A set of items U = {u1, u2, . . . , un} with sizes s1, s2, . . . , sn and
values v1, v2, . . . , vn and a knapsack capacity C.

Output: The maximum value of the function
P

ui2S
vi subject toP

ui2S
si  C for some subset of items S ✓ U .

1. V [1, 0] 0; V [2, 0] 0
2. for j 0 to C
3. V [1, j] 0
4. end for

5. for i 1 to n
6. for j 1 to C
7. V [2, j] V [1, j]
8. if si  j then V [2, j] max{V [2, j], V [1, j � si] + vi}
9. end for

10. for j 0 to m
11. V [1, j] V [2, j]
12. end for

13. end for

14. return V [2, C]

6.15. Show how to modify Algorithm knapsack so that it outputs the
items packed in the knapsack as well.

The modified algorithm is shown below as Algorithm knapsack3.
It makes use of a rectangular array K to store triplets (w, x, y),
where w is an item used in the packing for value V [i, j], and x and y
point to the last items in the packing for value V [i� 1, j� si]. The
while loop at the end of the algorithm is used to retrieve the items
in an optimal packing.

306 Dynamic Programming

Algorithm 6.9 knapsack3

Input: A set of items U = {u1, u2, . . . , un} with sizes s1, s2, . . . , sn and
values v1, v2, . . . , vn and a knapsack capacity C.

Output: The maximum value of the function
P

ui2S
vi subject toP

ui2S
si  C for some subset of items S ✓ U , and a subset

of items of maximum value.

1. for i 0 to n
2. V [i, 0] 0
3. K[i, 0] {0, 0, 0}
4. end for

5. for j 0 to C
6. V [0, j] 0
7. K[0, j] {0, 0, 0}
8. end for

9. for i 1 to n
10. for j 1 to C
11. V [i, j] V [i� 1, j]
12. K[i, j] {0, i� 1, j}
13. if si  j then

14. temp V [i� 1, j � si] + vi
15. if temp � V [i, j] then
16. V [i, j] temp
17. K[i, j] {i, i� 1, j � si}
18. end if

19. end if

20. end for

21. end for

22. output V [n,C]
23. i n; j C
24. while i > 0 and j > 0
25. (w, i, j) K[i, j]
26. if w > 0 then output w
27. end while

6.16. In order to lower the prohibitive running time of the knapsack prob-
lem, which is ⇥(nC), we may divide C and all the si’s by a large
number K and take the floor. That is, we may transform the given
instance into a new instance with capacity bC/Kc and item sizes
bsi/Kc, 1  i  n. Now, we apply the algorithm for the knapsack
discussed in Sec. 6.6. This technique is called scaling and rounding
(see Sec. 14.6). What will be the running time of the algorithm
when applied to the new instance? Give a counterexample to show
that scaling and rounding does not always result in an optimal

Solutions 307

solution to the original instance.

The running time will be ⇥(nC/K). Consider the instance: n =
2, s1 = v1 = 14, s2 = v2 = 15, C = 20. The optimal solution is to
pack one item of size s2. However, using K = 10, the new instance
is n = 2, s01 = 1, s02 = 1, C = 2, with optimal solution of packing
both items. This instance provides a counterexample.

6.17. Another version of the knapsack problem is to let the set U contain
a set of types of items, and the objective is to fill the knapsack with
any number of items of each type in order to maximize the total
value without exceeding the knapsack capacity. Assume that there
is an unlimited number of items of each type. More formally, let
T = {t1, t2, . . . , tn} be a set of n types of items, and C the knap-
sack capacity. For 1  j  n, let sj and vj be, respectively, the size
and value of the items of type j. Find a set of nonnegative inte-
gers x1, x2, . . . , xn such that

P
n

i=1 xivi is maximized subject to the
constraint

P
n

i=1 xisi  C. x1, x2, . . . , xn are nonnegative integers.
Note that xj = 0 means that no item of the jth type is packed
in the knapsack. Rewrite the dynamic programming algorithm for
this version of the knapsack problem.

The modified algorithm is shown as Algorithm knapsack4 below.

6.18. Solve the following instance of the version of the knapsack problem
described in Exercise 6.17. There are five types of items with sizes
2, 3, 5 and 6 and values 4, 7, 9 and 11, and the knapsack capacity
is 8.

The values matrix is given below. Thus, the optimal total value
is 18. This is achieved by packing one item of the first type and
two items of the second type.

0

BBBB@

0 0 0 0 0 0 0 0 0
0 0 4 4 8 8 12 12 16
0 0 4 7 8 11 14 15 18
0 0 4 7 8 11 14 15 18
0 0 4 7 8 11 14 15 18

1

CCCCA
.

6.19. Show how to modify the knapsack algorithm discussed in Exer-

308 Dynamic Programming

Algorithm 6.10 knapsack4

Input: A set of types of items items U = {u1, u2, . . . , un} with sizes
s1, s2, . . . , sn and
values v1, v2, . . . , vn and a knapsack capacity C.

Output: The maximum value of the function
P

ui2S
xivi subject toP

ui2S
xisi  C for some subset of items S ✓ U .

1. for i 0 to n
2. V [i, 0] 0
3. end for

4. for j 0 to C
5. V [0, j] 0
6. end for

7. for i 1 to n
8. for j 1 to C
9. V [i, j] V [i� 1, j]

10. if si  j then

11. for k 1 to bj/sic
12. V [i, j] max{V [i, j], V [i� 1, j � ksi] + kvi}
13. end for

14. end if

15. end for

16. end for

17. return V [n,C]

cise 6.17 so that it computes the number of items packed from
each type.

The modified algorithm is shown below as Algorithm knapsack5.
It makes use of a rectangular array K to store the 4-tuples
(w, k, x, y), where w is an item used in the packing for value V [i, j],
k is the number of items of w packed, and x and y point to the last
items in the packing for value V [i � 1, j � ksi]. The while loop
at the end of the algorithm is used to retrieve the items and their
numbers in an optimal packing.

6.20. Consider the money change problem. We have a currency system
that has n coins with values v1, v2, . . . , vn, where v1 = 1, and we
want to pay change of value y in such a way that the total number
of coins is minimized. More formally, we want to minimize the
quantity

P
n

i=1 xi, subject to the constraint
P

n

i=1 xivi = y. Here,
x1, x2, . . . , xn are nonnegative integers (so xi may be zero).

Solutions 309

Algorithm 6.11 knapsack5

Input: A set of types of items items U = {u1, u2, . . . , un} with sizes
s1, s2, . . . , sn and
values v1, v2, . . . , vn and a knapsack capacity C.

Output: The maximum value of the function
P

ui2S
xivi subject toP

ui2S
xisi  C for some subset of items S ✓ U , and a subset of the

items.

1. for i 0 to n
2. V [i, 0] 0
3. K[i, 0] {0, 0, 0, 0}
4. end for

5. for j 0 to C
6. V [0, j] 0
7. K[0, j] {0, 0, 0, 0}
8. end for

9. for i 1 to n
10. for j 1 to C
11. V [i, j] V [i� 1, j]
12. K[i, j] {0, 0, i� 1, j}
13. if si  j then

14. for k 1 to bj/sic
15. temp V [i� 1, j � ksi] + kvi
16. if temp � V [i, j] then
17. V [i, j] temp
18. K[i, j] {i, k, i� 1, j � ksi}
19. end if

20. end for

21. end if

22. end for

23. end for

24. output V [n,C]
25. i n; j C
26. while i > 0 and j > 0
27. (w, k, i, j) K[i, j]
28. if k > 0 then output (w, k)
29. end while

(a) Give a dynamic programming algorithm to solve this problem.

(b) What are the time and space complexities of your algorithm?

(c) Can you see the resemblance of this problem to the version of
the knapsack problem discussed in Exercise 6.17? Explain.

(a) The dynamic programming algorithm is given below as Algo-
rithm moneychangedp. It makes use of a rectangular ar-

310 Dynamic Programming

ray K to store the 4-tuples (w, k, x, y), where w is a coin used
in the change for value V [i, j], k is the number of coins w given
in the change, and x and y point to the last solution for the
change of value V [i�1, j�kvi]. The while loop at the end of
the algorithm is used to retrieve the coins and their numbers
in an optimal change.

Algorithm 6.12 moneychangedp

Input: A set of n coins with values v1, v2, . . . , vn, where v1 = 1 and a value y.

Output: Pay value y using minimum number of coins. Output set of coins.

1. for j 1 to C
2. V [1, j] bj/v1c
3. K[1, j] {1, bj/v1c, 0, 0}
4. end for

5. for i 2 to n
6. for j 1 to C
7. V [i, j] V [i� 1, j]
8. K[i, j] {0, 0, i� 1, j}
9. if vi  j then

10. for k 1 to bj/vic
11. j1 j � kvi
12. temp V [i� 1, j1] + k
13. if temp  V [i, j] then
14. V [i, j] temp
15. K[i, j] {i, k, i� 1, j1}
16. end if

17. end for

18. end if

19. end for

20. end for

21. output V [n,C]
22. i n; j C
23. while i > 0 and j > 0
24. (w, k, i, j) K[i, j]
25. if k > 0 then output (w, k)
26. end while

(b) The time complexity of the algorithm is ⇥(n, y), which is also
the space complexity.

(c) The algorithm is very similar to Algorithm knapsack5.

6.21. Apply the algorithm in Exercise 6.20 to the instance v1 = 1, v2 =
5, v3 = 7, v4 = 11 and y = 20.

Solutions 311

The values matrix is given by

0

BB@

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 2 3 4 1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 4
1 2 3 4 1 2 1 2 3 2 3 2 3 2 3 4 3 4 3 4
1 2 3 4 1 2 1 2 3 2 1 2 3 2 3 2 3 2 3 4

1

CCA .

The change is {(1, 2), (3, 1), (4, 1)}. That is, two coins of value
v1 = 1, one coin of value v3 = 7 and one coin of value v4 = 11.

6.22. Let G = (V,E) be a directed graph with n vertices. G induces a
relation R on the set of vertices V defined by: u R v if and only
if there is a directed edge from u to v, i.e., if and only if (u, v) 2
E. Let MR be the adjacency matrix of G, i.e., MR is an n ⇥ n
matrix satisfying MR[u, v] = 1 if (u, v) 2 E and 0 otherwise. The
reflexive and transitive closure of MR, denoted by M⇤

R
, is defined

as follows. For u, v 2 V , if u = v or there is a path in G from u to v,
then M⇤

R
[u, v] = 1 and 0 otherwise. Give a dynamic programming

algorithm to compute M⇤
R

for a given directed graph. (Hint: You
only need a slight modification of Floyd’s algorithm for the all-pairs
shortest path problem).

The algorithm, shown below as Algorithm transclosure, is a
simple modification of Algorithm floyd.

Algorithm 6.13 transclosure

Input: An n ⇥ n matrix A[1..n, 1..n] such that A[i, j] = 1 if there is an edge
(i, j) in a directed graph G = ({1, 2, . . . , n}, E), and 0 otherwise.

Output: A⇤, the transitive closure of A.

1. A⇤ A {copy the input matrix A into A⇤}
2. for k 1 to n
3. for i 1 to n
4. for j 1 to n
5. A⇤[i, j] = A⇤[i, j] _ (A⇤[i, k] ^A⇤[k, j])
6. end for

7. end for

8. end for

6.23. Let G = (V,E) be a directed graph with n vertices. Define the

312

n ⇥ n distance matrix D as follows. For u, v 2 V , D[u, v] = d if
and only if the length of the shortest path from u to v measured
in the number of edges is exactly d. For example, for any v 2 V ,
D[v, v] = 0 and for any u, v 2 V D[u, v] = 1 if and only if (u, v) 2 E.
Give a dynamic programming algorithm to compute the distance
matrix D for a given directed graph. (Hint: Again, you only need
a slight modification of Floyd’s algorithm for the all-pairs shortest
path problem).

The algorithm, shown below as Algorithm shortestdist2, is a
simple modification of Algorithm floyd.

Algorithm 6.14 shortestdist2

Input: An n ⇥ n matrix A[1..n, 1..n] such that A[i, j] is 1 if there is an edge
(i, j) in a directed graph G = ({1, 2, . . . , n}, E), and 0 otherwise.

Output: A matrix D with D[i, j] = the distance from i to j measured in
number of edges.

1. D A {copy the input matrix A into D}
2. for k 1 to n
3. for i 1 to n
4. for j 1 to n
5. D[i, j] = min{D[i, j], D[i, k] + D[k, j]}
6. end for

7. end for

8. end for

6.24. Let G = (V,E) be a directed acyclic graph (dag) with n vertices.
Let s and t be two vertices in V such that the indegree of s is 0 and
the outdegree of t is 0. Give a dynamic programming algorithm
to compute a longest path in G from s to t. What is the time
complexity of your algorithm?

A longest path between s and t is the same as a shortest path in the
graph G0 derived from G by changing every weight to its negation.
Therefore, apply any algorithm for the shortest path problem on G0

to find the longest path from s to all other vertices. The time
complexity is the same as that for the shortest path algorithm. If
we use Algorithm floyd, then the time complexity is ⇥(n3).

344 The Greedy Approach

7.9 Solutions

7.1. Suppose in the money change problem of Example 7.1, the coin
values are: 1, 2, 4, 8, 16, . . . , 2k, for some positive integer k. Give an
O(log n) algorithm to solve the problem if the value to be paid is
y < 2k+1.

Let the binary representation of y be b0, b1, . . . , bk�1. For 0  i 
k � 1, include value 2i if and only if bi = 1.

7.2. Let G = (V,E) be an undirected graph. A vertex cover for G is a
subset S ✓ V such that every edge in E is incident to at least one
vertex in S. Consider the following algorithm for finding a vertex
cover for G. First, order the vertices in V by decreasing order of
degree. Next execute the following step until all edges are covered.
Pick a vertex of highest degree that is incident to at least one edge
in the remaining graph, add it to the cover, and delete all edges
incident to that vertex. Show that this greedy approach does not
always result in a vertex cover of minimum size.

Consider the graph shown in Fig. 7.10. Using this algorithm, ver-
tex a will be added to the cover first. The resulting vertex cover is
{a, b, c, d}, while the minimum vertex cover is {b, c, d}.

a

b

e
c

f

d

g

Fig. 7.10 Undirected graph for Exercise 7.2.

7.3. Let G = (V,E) be an undirected graph. A clique C in G is a
subgraph of G that is a complete graph by itself. A clique C is
maximum if there is no other clique C 0 in G such that the size of
C 0 is greater than the size of C. Consider the following method

Solutions 345

that attempts to find a maximum clique in G. Initially, let C = G.
Repeat the following step until C is a clique. Delete from C a
vertex that is not connected to every other vertex in C. Show that
this greedy approach does not always result in a maximum clique.

Consider the graph shown in Fig. 7.11. Deleting vertex a will not
result in a maximum clique.

a

Fig. 7.11 Undirected graph for Exercise 7.3.

7.4. Let G = (V,E) be an undirected graph. A coloring of G is an
assignment of colors to the vertices in V such that no two adjacent
vertices have the same color. The coloring problem is to determine
the minimum number of colors needed to color G. Consider the
following greedy method that attempts to solve the coloring prob-
lem. Let the colors be 1, 2, 3, First, color as many vertices as
possible using color 1. Next, color as many vertices as possible us-
ing color 2, and so on. Show that this greedy approach does not
always color the graph using the minimum number of colors.

Consider the graph shown in Fig. 7.12, and the coloring shown. The
number of colors used by the algorithm is 4, while the minimum
number of colors is 3.

1

2
3

4
2

1

Fig. 7.12 Undirected graph for Exercise 7.4.

346 The Greedy Approach

7.5. Let A1, A2, . . . , Am be m arrays of integers each sorted in nonde-
creasing order. Each array Aj is of size nj . Suppose we want to
merge all arrays into one array A using an algorithm similar to Al-
gorithm merge described in Sec. 1.4. Give a greedy strategy for
the order in which these arrays should be merged so that the overall
number of comparisons is minimized. For example, if m = 3, we
may merge A1 with A2 to obtain A4 and then merge A3 with A4

to obtain A. Another alternative is to merge A2 with A3 to obtain
A4 and then merge A1 with A4 to obtain A. Yet another alterna-
tive is to merge A1 with A3 to obtain A4 and then merge A2 with
A4 to obtain A. (Hint: Give an algorithm similar to Algorithm
huffman).

Use an algorithm similar to Algorithm huffman. Merge the two
smallest arrays, then the next two smallest arrays, etc. See Exer-
cise 7.6.

7.6. Analyze the time complexity of the algorithm in Exercise 7.5. Hint:
If we merge the two smallest arrays, then the next two smallest
arrays, etc., then each time we merge, the resulting array size is at
least double the smaller array size.

If we merge the two smallest arrays, then the next two smallest
arrays, etc., then each time we merge, the resulting array size is
at least double the smaller array size. Thus, the number of times
an item participates in a comparison (i.e. is compared) is at most
O(log n). This means the total number of comparisons is O(n log n).

7.7. Consider the following greedy algorithm which attempts to find
the distance from vertex s to vertex t in a directed graph G with
positive lengths on its edges. Starting from vertex s, go to the
nearest vertex, say x. From vertex x, go to the nearest vertex,
say y. Continue in this manner until you arrive at vertex t. Give a
graph with the fewest number of vertices to show that this heuristic
does not always produce the distance from s to t. (Recall that the
distance from vertex u to vertex v is the length of a shortest path
from u to v).

Consider the directed graph shown in Fig. 7.13. Starting from
vertex s, the algorithm will first visit x, then from x, it will visit t.

Solutions 347

The length of the path found is 4, while the shortest path from s
to t is of length 2.

x

ts
2

31

Fig. 7.13 Directed graph for Exercise 7.7.

7.8. Modify Algorithm dijkstra so that it finds the shortest paths in
addition to their lengths. Hint: Use an array P such that P [v]
stores the parent of the new vertex v.

In Algorithm dijkstra, add the statement P [w] y after the
statement �[w] �[y] + length[y, w].

7.9. Prove that the subgraph defined by the paths obtained from the
modified shortest path algorithm as described in Exercise 7.8 is a
tree. This tree is called the shortest path tree.

P [w] as defined in Exercise 7.8 is a single value, and since all vertices
except the start vertex are assigned a parent, the number of edges
in the subgraph is n � 1. Obviously, the subgraph is connected.
Since it is connected and consists of n � 1 edges, it follows that it
is a tree.

7.10. Can a directed graph have two distinct shortest path trees (see
Exercise 7.9)? Prove your answer.

Consider the directed graph G shown in Fig. 7.14. Starting from
vertex s, there are two shortest path trees shown in the figure: T1

and T2.

7.11. Show that the proof of correctness of Algorithm dijkstra

(Lemma 7.1) does not work if some of the edges in the input graph
have negative weights.

If there are negative weights, the statement �[y]  �[x] +

348 The Greedy Approach

x

ys
1

G

12

1

x

ys

T
1

2

T
2

x

ys
1

1

Fig. 7.14 Directed graph and trees for Exercise 7.10.

length(x,w) may imply that �[y] < �[x]. This contradicts the
assumption that x left Y before y.

7.12. Let G = (V,E) be a directed graph such that removing the direc-
tions from its edges results in a planar graph. What is the running
time of Algorithm shortestpath when applied to G? Compare
that to the running time when using Algorithm dijkstra.

Since removing directions results in a planar graph, m = O(n).
Hence, the running time is O(n log n). This is to be contrasted to
the performance of Algorithm dijkstra, which is O(n2).

7.13. Let G = (V,E) be a directed graph such that m = O(n1.2), where
n = |V | and m = |E|. What changes should be made to Algorithm
shortestpath so that it will run in time O(m)?

Use d-heaps, where d = d2 + m/ne = d2 + n0.2e.

7.14. Let G = (V,E) be an undirected graph such that m = O(n1.99),
where n = |V | and m = |E|. Suppose you want to find a mini-
mum cost spanning tree for G. Which algorithm would you choose:
Algorithm prim or Algorithm kruskal? Explain.

Algorithm kruskal costs O(m logm) = O(n1.99 log n). Algorithm
prim costs O(n2). Since n1.99 log n = o(n2), Kruscal’s algorithm is
more e�cient.

7.15. Refer to Fig. 7.15.

(a) Run Prim’s algorithm starting from vertex 3 in order to find
a minimum spanning tree of the graph. Make sure you indi-

Solutions 349

cate the order in which each edge is added to the minimum
spanning tree.

(b) Can this graph have more than one minimum spanning trees?
Justify your answer.

1

1
12

10

9

11

5

32

8 9

64

7 6

8

4

5

3

2

7

Fig. 7.15 Undirected graph.

(a) Similar to the example shown in Fig. 7.5.

(b) There is only one minimum spanning tree since the costs are
distinct. See Exercise 7.18.

7.16. Let e be an edge of minimum weight in an undirected graph G.
Show that e belongs to some minimum cost spanning tree of G.

Let T be a minimum spanning tree. If e is not in T , add e to T .
This will create a cycle C, which contains e, and at least one more
edge e0. Now, the weight of e is  the weight of e0, since e is of
minimum weight. If we delete e0 from T [{e}, the resulting graph
is still connected and is a tree. Also, the total weight of this new
tree, which contains e, is less than or equal to that of T , and thus
it is of minimum total weight.

350 The Greedy Approach

7.17. Does Algorithm prim work correctly if the graph has negative
weights? Prove your answer.

It works correctly with negative weights. To see why, add a large
positive number to all weights. Then, the resulting minimum span-
ning tree is the same.

7.18. Let G be an undirected weighted graph such that no two edges
have the same weight. Prove that G has a unique minimum cost
spanning tree.

Refer to Fig. 7.16 for an illustration. Let G be a connected graph
with two minimum spanning trees T and T 0. We will show that G
contains two edges that have the same weight. Each of the two
spanning trees must contain an edge that the other tree does not
include. Let e be a minimum-weight edge in T �T 0, and let e0 be a
minimum-weight edge in T 0�T . Without loss of generality, suppose
w(e)  w(e0), where w is the weight function. The subgraph T 0[{e}
contains a unique cycle C, which passes through the edge e. Let e00

be any edge of this cycle that is not in T (e00 may be equal to e0).
Since e 2 T , we must have e00 6= e, and therefore e00 2 T 0 � T . It
follows that w(e00) � w(e0) � w(e). Now, consider the spanning
tree T 00 = T 0 + e � e00 (T 00 may be equal to T). We immediately
have w(T 00) = w(T 0)+w(e)�w(e00)  w(T 0). But T 0 is a minimum
spanning tree, so we must have w(T 00) = w(T 0); in other words, T 00

is also a minimum spanning tree. It follows that w(e) = w(e00).

e
G

e”

e’

e

Ce”

e’

T’

e”

e’

T”

e’

T e

T’ U e

Fig. 7.16 Illustration of the proof for Exercise 7.18.

Solutions 351

7.19. What is the number of spanning trees of a complete undirected
graph G with n vertices? For example, the number of spanning
trees of K3, the complete graph on three vertices, is 3.

The number of spanning trees for n distinct vertices is nn�2.

7.20. Let G be a directed weighted graph such that no two edges have the
same weight. Let T be a shortest path tree for G (see Exercise 7.9).
Let G0 be the undirected graph obtained by removing the directions
from the edges of G. Let T 0 be a minimum spanning tree for G0.
Prove or disprove that T = T 0.

T (after removing directions) and T 0 may be di↵erent. Consider
the directed graph G shown in Fig. 7.17. Starting from vertex s,
T1 is a shortest path tree. If we remove the directions in G, and
find the minimum spanning tree, the resulting tree T2 is di↵erent
from T1 after removing directions.

x

ys
3

G

24

3

x

ys

T
1

4

T
2

x

ys
3

2

Fig. 7.17 Directed graph and trees for Exercise 7.20.

7.21. Prove that the graph obtained in Algorithm huffman is a tree.

Number of added edges = total number of edges = 2(n�1) = 2n�2.
Number of added vertices = n � 1, and hence total number of
vertices = n+ (n� 1) = 2n� 1. Since the total number of edges is
equal to the total number of vertices minus one, and the graph is
obviously connected, it follows that it is a tree.

7.22. Algorithm huffman constructs the code tree in a bottom-up fash-
ion. Is it a dynamic programming algorithm?

352 The Greedy Approach

The principle of optimality holds, and hence it is a dynamic pro-
gramming algorithm.

7.23. Let B = {b1, b2, . . . , bn} and W = {w1, w2, . . . , wn} be two sets
of black and white points in the plane. Each point is repre-
sented by the pair (x, y) of x and y coordinates. A black point
bi = (xi, yi) dominates a white point wj = (xj , yj) if and only
if xi � xj and yi � yj . A matching between a black point bi
and a white point wj is possible if bi dominates wj . A matching
M = {(bi1 , wj1), (bi2 , wj2), . . . , (bik , wjk)} between the black and
white points is maximum if k, the number of matched pairs in M ,
is maximum. Design a greedy algorithm to find a maximum match-
ing in O(n log n) time. (Hint: Sort the black points in increasing
x-coordinates and use a heap for the white points).

Consider the following greedy algorithm that finds a maximum
matching. Sort the black points in increasing x-coordinates and, let
this sorted list be Bs. Scan the points in Bs in increasing order of
their x-coordinates, each time matching the current black point b
with the unmatched white point of maximum y-coordinate that is
dominated by b. Use a heap to store the white points. Clearly, the
running time is O(n log n).

Solutions 371

8.9 Solutions

8.1. Give an iterative version of Algorithm dfs that uses a stack to store
unvisited vertices.

An iterative version of depth-first search is given below as Algo-
rithm dfsiterative. In the algorithm, St is a stack used to store
unvisited vertices.

Algorithm 8.5 dfsiterative

Input: A directed or undirected graph G = (V,E).

Output: Numbering of the vertices in depth-first search order.

1. predfn 0; postdfn 0
2. for each vertex v 2 V
3. mark v unvisited
4. end for

5. for each vertex v 2 V
6. if v is marked unvisited then dfs(v)
7. end for

Algorithm dfs(v)

1. St {v}
2. mark v visited
3. while St 6= {}
4. v Pop(St)
5. predfn predfn + 1
6. for each edge (v, w) 2 E
7. if w is marked unvisited then

8. Push(w, St)
9. mark w visited

10. end if

11. end for

12. postdfn postdfn + 1
13. end while

8.2. What will be the time complexity of the depth-first search algo-
rithm if the input graph is represented by an adjacency matrix (see
Sec. 2.3.1 for graph representation).

The running time will be ⇥(n) for each vertex, as the algorithm
needs to search for the next vertex to be visited in the adjacency
matrix. Thus, the time complexity is ⇥(n2).

372 Graph Traversal

8.3. Show that when depth-first search is applied to an undirected graph
G, the edges of G will be classified as either tree edges or back edges.
That is, there are no forward edges or cross edges.

An edge (v, w) in an undirected graph is a tree edge if w was first
visited when exploring the edge (v, w), otherwise it is a back edge.

8.4. Suppose that Algorithm dfs is applied to an undirected graph G.
Give an algorithm that classifies the edges of G as either tree edges
or back edges.

Let f(v) be predfn when v was visited in the call dfs(v) (see Algo-
rithm dfs2). Then, (v, w) is a tree edge if f(v) < f(w), otherwise
it is a back edge.

Algorithm 8.6 dfs2
Input: A (directed or undirected) graph G = (V,E).

Output: Preordering and postordering of the vertices in the corresponding
depth-first search tree.

1. predfn 0; postdfn 0
2. for each vertex v 2 V
3. mark v unvisited
4. f(v) 0
5. g(v) 0
6. end for

7. for each vertex v 2 V
8. if v is marked unvisited then dfs(v)
9. end for

Algorithm dfs(v)

1. mark v visited
2. predfn predfn + 1
3. f(v) predfn
4. for each edge (v, w) 2 E
5. if w is marked unvisited then dfs(w)
6. end for

7. postdfn postdfn + 1
8. g(v) postdfn

8.5. Suppose that Algorithm dfs is applied to a directed graph G. Give
an algorithm that classifies the edges of G as either tree edges, back
edges, forward edges or cross edges.

Solutions 373

Let f(v) and g(v) be predfn and postdfn, respectively, when v was
visited in the call dfs(v) (see Algorithm dfs2). Then,
(1) (v, w) is a tree edge if f(v) < f(w), g(w) < g(v) and w was first
visited when exploring the edge (v, w).
(2) (v, w) is a forward edge if f(v) < f(w), g(w) < g(v) and w was
marked visited when exploring the edge (v, w).
(3) (v, w) is a back edge if f(w) < f(v) and g(v) < g(w).
(4) (v, w) is a cross edge, otherwise.
See Fig. 8.2 for an example.

8.6. Give an algorithm that counts the number of connected compo-
nents in an undirected graph using depth-first search or breadth-
first search.

See Algorithm connectedcomp1 below.

Algorithm 8.7 connectedcomp1

Input: An undirected graph G = (V,E).

Output: Number of connected components in G.

1. cc 0
2. for each vertex v 2 V
3. mark v unvisited
4. end for

5. for each vertex v 2 V
6. if v is marked unvisited then

7. cc cc + 1
8. dfs(v)
9. end if

10. end for

11. return cc

Algorithm dfs(v)

1. mark v visited
2. for each edge (v, w) 2 E
3. if w is marked unvisited then dfs(w)
4. end for

8.7. Given an undirected graph G, design an algorithm to list the ver-
tices in each connected component of G separately.

See Algorithm connectedcomp2 below. The algorithm lists the

374 Graph Traversal

pairs (cc, v), where cc is a connected component number, and v is
a vertex in connected component cc.

Algorithm 8.8 connectedcomp2

Input: An undirected graph G = (V,E).

Output: List of vertices and their connected components in G.

1. cc 0
2. for each vertex v 2 V
3. mark v unvisited
4. end for

5. for each vertex v 2 V
6. if v is marked unvisited then

7. cc cc + 1
8. dfs(v)
9. end if

10. end for

Algorithm dfs(v)

1. mark v visited
2. output (cc, v)
3. for each edge (v, w) 2 E
4. if w is marked unvisited then dfs(w)
5. end for

8.8. Give an O(n) time algorithm to determine whether a connected
undirected graph with n vertices contains a cycle.

Do at most n + 1 iterations of Algorithm dfs. If there is a cycle,
then a vertex will be visited twice. Stop the search after n + 1
iterations or as soon as a vertex is visited for the second time. This
is indicated by exploring a back edge. In this case, only O(n) edges
are explored, and hence the running time is O(n).

8.9. Let T be the depth-first search tree resulting from a depth-first
search traversal on a connected undirected graph. Show that the
root of T is an articulation point if and only if it has two or more
children. (See Sec. 8.3.3)

Let r be the root of the depth-first search tree T . First, suppose r
is an articulation point. Then, the removal of r from G would cause
the graph to be disconnected, so r has at least two children in T .

Solutions 375

Now suppose r has at least two children u and v in T . Then, there
is no path from u to v in G which doesn’t go through r, since
otherwise u would be an ancestor of v or v would be an ancestor
of u. Thus, removing r disconnects the component containing u
and the component containing v, so r is an articulation point.

8.10. Let T be the depth-first search tree resulting from a depth-first
search traversal on a connected undirected graph. Show that a
vertex v other than the root is an articulation point if and only if
v has a child w with �[w] � ↵[v]. (See Sec. 8.3.3 for definition of
↵[v] and �[w]).

Suppose that v is a vertex of the depth-first search tree di↵erent
from the root, and that v is an articulation point. Then, v has a
child w such that neither w nor any of w’s descendants have back
edges to a proper ancestor of v. In other words, for some child w
of v we have �[w] � ↵[v].
Now suppose that v is not an articulation point, so for every child
w of v, there exists a descendant of that child which has a back
edge to a proper ancestor of v. In other words, for every child w
of v we have �[w] < ↵[v].

8.11. An edge of a connected undirected graph G is called a bridge if
its deletion disconnects G. Modify the algorithm for finding ar-
ticulation points so that it detects bridges instead of articulation
points.

An edge is a bridge if and only if both of its endpoints are articu-
lation points or one endpoint is an articulation point and the other
is a vertex of degree 1. So, run Algorithm articpoints to find the
articulation points, and then decide which edges are bridges.

8.12. Show the result of running breadth-first search on the undirected
graph of Fig. 8.9 starting at vertex f .

Similar to the example in Fig. 8.7.

8.13. Show the result of running breadth-first search on the directed
graph of Fig. 8.10 starting at vertex e.

Similar to the example in Fig. 8.7.

376 Graph Traversal

8.14. Show that when breadth-first search is applied to an undirected
graph G, the edges of G will be classified as either tree edges or
cross edges. That is, there are no back edges or forward edges.

Suppose there is a path from u to w, and there is a path from w to v.
Suppose also that there is an edge (u, v). Moreover, let u be closer
to the root than v. Then, when processing vertex u by breadth-
first search, vertex v will be pushed, that is, the edge (u, v) will
be considered immediately, not later as a forward or back edge.
So, there are no forward or back edges since breadth-first search
considers shortest paths first.

8.15. Show that when breadth-first search is applied to a directed graph
G, the edges of G will be classified as tree edges, back edges or cross
edges. That is, unlike the case of depth-first search, the search does
not result in forward edges.

Suppose there is a path from u to w, and there is a path from w to v.
Suppose also that there is an edge (u, v). Then, when processing
vertex u by breadth-first search, vertex v will be pushed, that is, the
edge (u, v) will be considered immediately, not later as a forward
edge. So, there are no forward edges since breadth-first search
considers shortest paths first.

8.16. Let G be a graph (directed or undirected), and let s be a vertex
in G. Modify Algorithm bfs so that it outputs the shortest path
measured in the number of edges from s to every other vertex.

In Procedure bfs(v) of Algorithm bfs, add the statement p(w) v
after w is pushed into the queue, which adds a pointer from w to its
parent v in the shortest path tree produced by breadth-first search.

8.17. Use depth-first search to find a spanning tree for the complete bi-
partite graph K3,3. (See Sec. 2.3 for the definition of K3,3).

Fig. 8.11(a) shows the complete bipartite graph K3,3, and
Fig. 8.11(b) shows its depth-first search spanning tree.

8.18. Use breadth-first search to find a spanning tree for the complete
bipartite graph K3,3. Compare this tree with the tree obtained in
Exercise 8.17.

Solutions 377

s s s

(a) (b) (c)

Fig. 8.11 Complete bipartite graph K3,3, and its spanning trees.

Fig. 8.11(a) shows the complete bipartite graph K3,3, and
Fig. 8.11(c) shows its breadth-first search spanning tree. The
breadth-first search tree, which is a shortest path tree, has height 2,
as opposed to the depth-first search tree whose height is 5.

8.19. Suppose that Algorithm bfs is applied to an undirected graph G.
Give an algorithm that classifies the edges of G as either tree edges
or cross edges.

In Procedure bfs(v) of Algorithm bfs, add the following statement
after the test in Line 7:
if w is marked unvisited then output (v, w) is a tree edge
else output (v, w) is a cross edge. (See Exercise 8.14).

8.20. Suppose that Algorithm bfs is applied to a directed graph G. Give
an algorithm that classifies the edges of G as either tree edges, back
edges or cross edges.

Do as in Exercise 8.19, except that edges other than the tree edges
are either back or cross edges. To distinguish between back edges
and cross edges, use the fact that an edge (v, w) is a back edge if
and only if it is not a tree edge, and w is an ancestor of v. (See
Exercise 8.15).

8.21. Show that the time complexity of breadth-first search when applied
on a graph with n vertices and m edges is ⇥(n + m).

Apply the same analysis as in depth-first search.

378

8.22. Design an e�cient algorithm to determine whether a given graph
is bipartite (see Sec. 2.3 for the definition of a bipartite graph).

A graph G is bipartite if and only if its vertices can be colored using
two colors. Use breadth-first search to color the vertices of G in a
greedy manner: Color the root using color 1, then color the vertices
at distance 1 using color 2, etc. until either all vertices have been
colored or a conflict is reached.

8.23. Design an algorithm to find a cycle of shortest length in a directed
graph. Here, the length of a cycle is measured in terms of its number
of edges.

One possibility is to use breadth-first search m times, where m
is the number of edges. In each run of Algorithm bfs, delete an
edge (u, v) and find the shortest path from v to u. If the length of
shortest path found is k, then the length of shortest cycle is k + 1.
Output the shortest cycle found (see Exercise 8.16).

8.24. Let G be a connected undirected graph, and T the spanning tree
resulting from applying breadth-first search on G starting at ver-
tex r. Prove or disprove that the height of T is minimum among
all spanning trees with root r.

The height of T is equal to the maximum distance from the root to
a leaf node. By the property of shortest-path lengths of breadth-
first search, the height of T is minimum among all spanning trees
with root r.

404 NP-complete Problems

9.10 Solutions

9.1. Let ⇧1 and ⇧2 be two problems such that ⇧1 /poly ⇧2. Suppose
that problem ⇧2 can be solved in O(nk) time and the reduction
can be done in O(nj) time. Show that problem ⇧1 can be solved
in O(njk) time.

Since the reduction can be done in O(nj) time, the length of the
output of the reduction, which is the input to ⇧2 is O(nj). But
this implies that applying ⇧2 on this input takes O((nj)k) = O(njk)
steps.

9.2. Given that the Hamiltonian cycle problem for undirected graphs is
NP-complete, show that the Hamiltonian cycle problem for directed
graphs is also NP-complete.

We show that the Hamiltonian cycle problem for undirected graphs
reduces to the Hamiltonian cycle problem for directed graphs.
Given an undirected graph G = (V,E), it is straightforward to
convert it to a directed graph G0 = (V,E0) such that G has a
Hamiltonian cycle if and only if G0 has a Hamiltonian cycle by re-
placing each undirected edge in E with two antidirectional edges
in the obvious way. Then, there is a Hamiltonian cycle in G if and
only if there is a Hamiltonian cycle in G0.

9.3. Show that the problem bin packing is NP-complete, assuming
that the problem partition is NP-complete.

We show that partition /poly bin packing. Let S =
{a1, a2, . . . , an} be an instance of the problem partition. Let
C = 1

2

P
n

i=1 ai. Then, there is a partition of S into S1 and S2

such that
P

ai2S1
ai =

P
aj2S2

aj if and only if the items in S
can be packed into k = 2 bins of size C each. It follows that the
problem bin packing is NP-complete, assuming that the problem
partition is NP-complete.

9.4. Let ⇧1 and ⇧2 be two NP-complete problems. Prove or disprove
that ⇧1 /poly ⇧2.

By definition of an NP-complete problem, every problem in NP
reduces to ⇧2 in polynomial time. Since ⇧1 is NP-complete, it is

Solutions 405

in NP, and hence ⇧1 /poly ⇧2.

9.5. Give a polynomial time algorithm to find a clique of size k in a given
undirected graph G = (V,E) with n vertices. Here k is a fixed
positive integer. Does this contradict the fact that the problem
clique is NP-complete? Explain.

The algorithm tests all possibilities of subgraphs of size k. Since
verifying each clique takes O(n2) time, the overall running time is
O(Kn2), where K =

�
n

k

�
. Since, K = O(nk), the overall running

time is O(nk+2), which is a polynomial of degree k + 2. This does
not contradict the fact that problem clique is NP-complete, as k
is fixed in this case.

9.6. The NP-completeness of the problem clique was shown by reduc-
ing satisfiability to it. Give a simpler reduction from vertex

cover to clique.

Let G = (V,E) be an undirected graph. A subset S ✓ V is a vertex
cover for G if and only if V � S is an independent set in G if and
only if V � S is a clique in G, the complement of G.

9.7. Show that any cover of a clique of size n must have exactly n � 1
vertices.

Let C be a cover for a clique of size n. First, suppose that |C| 
n � 2. Then, there are at least two vertices u and v not in the
cover. But this implies that the edge (u, v) is not covered. This
shows that |C| � n� 1. To show that n� 1 vertices are su�cient,
suppose that vertex x is the only vertex not in the cover. Then, any
edge (x, y) is covered. This shows that if C is a cover of minimum
size, then |C|  n� 1. It follows that |C| = n� 1.

9.8. Show that if one can devise a polynomial time algorithm for the
problem satisfiability then NP = P (see Exercise 9.1).

Suppose that there is a polynomial time algorithm for the problem
satisfiability, and let ⇧ be any problem in NP. By definition of
NP-complete, ⇧ /poly satisfiability. By Exercise 9.1, ⇧ 2 P.

9.9. In Chapter 6 it was shown that the problem knapsack can be

406 NP-complete Problems

solved in time ⇥(nC), where n is the number of items and C is the
knapsack capacity. However, it was mentioned in this chapter that
it is NP-complete. Is there any contradiction? Explain.

The problem knapsack can be solved in time ⇥(nC), where C
is the knapsack capacity. Hence, the running time is polynomial
in input value, but exponential in input size. Thus, there is no
contradiction.

9.10. When showing that an optimization problem is not harder than
its decision problem version, it was justified by using binary search
and an algorithm for the decision problem in order to solve the
optimization version. Will the justification still be valid if linear
search is used instead of binary search? Explain. (Hint: Consider
the problem traveling salesman).

If linear search is used, the justification may not be valid. Let A
be an algorithm to solve the problem traveling salesman. If we
call A n times to search for the minimum tour length, the number of
calls to Algorithm A is exponential in the input size. Using binary
search for the search, however, results in a linear number of calls
to Algorithm A measured in the input size.

9.11. Prove that if an NP-complete problem ⇧ is shown to be solvable in
polynomial time, then NP = P (see Exercises 9.1 and 9.8).

Suppose that there is a polynomial time algorithm for the problem
⇧, and let ⇧0 be any problem in NP. By definition of NP-complete,
⇧0 /poly ⇧. By Exercise 9.1, ⇧0 2 P.

9.12. Prove that NP = P if and only if for some NP-complete problem
⇧, ⇧ 2 P.

Suppose that NP = P. Then, if ⇧ is NP-complete, we have ⇧ 2 NP,
and thus ⇧ 2 P. On the other hand, suppose that for some NP-
complete problem ⇧, ⇧ 2 P. Then, by Exercise 9.11, NP = P.

9.13. Is the problem longest path NP-complete when the path is not
restricted to be simple? Prove your answer.

Yes, it is NP-complete. It is easy to see that the problem Hamil-

tonian cycle can be reduced to this problem in polynomial time.

Solutions 407

9.14. Is the problem longest path NP-complete when restricted to di-
rected acyclic graphs? Prove your answer. (See Exercises 9.13
and 6.24).

This problem can be solved in polynomial time (See Exercise 6.24).

9.15. Show that the problem of finding a shortest simple path between
two vertices s and t in a directed or undirected graph is NP-
complete if the weights are allowed to be negative.

It is easy to see that the problem longest simple path can be
reduced to this problem in polynomial time. The problem longest

simple path can be shown to be NP-complete by reducing the
problem hamiltonian path to it.

9.16. Show that the problem set cover is NP-complete by reducing the
problem vertex cover to it.

Let G = (V,E) be an undirected graph with n vertices and m edges.
Label the edges so that E = {1, 2, 3, . . . ,m}. Construct an instance
of the problem set cover as follows. Let X = E, and the set of
subsets F = {Sv | v 2 V }, where Sv consists of the set of edges
incident to v in G. It is easy to see that there is a vertex cover in G
of size k if and only if there is a set cover in the instance of set
cover of size k.

9.17. Simplify the reduction from the problem satisfiability to vertex

cover by using 3-sat instead of satisfiability.

The reduction is the same, except that the cliques will simplify to
triangles, and k = n +

P
m

j=1(nj � 1) = n +
P

m

j=1 2 = n + 2m.

9.18. Compare the di�culty of the problem tautology to satisfiabil-

ity. What does this imply about the di�culty of the class co-NP.

The problem tautology, which is complete for the class co-NP,
is such that (1) tautology is in P if and only if co-NP = P, and
(2) tautology is in NP if and only if co-NP = NP. So, there are
more conclusions if it is shown that it is in P or NP. This is to be
contrasted with the problem satisfiability, which is in P if and
only if NP = P. This shows that it is likely that problems that are

408 NP-complete Problems

complete for the class co-NP are more di�cult than NP-complete
problems.

9.19. Prove Theorem 9.8.

Suppose that problem ⇧ and its complement ⇧ are NP-complete.
Since ⇧ is NP-complete, ⇧ is complete for the class co-NP, and
hence any problem ⇧0 in co-NP reduces to ⇧ in polynomial time.
Since ⇧ is NP-complete, ⇧0 reduces to an NP-complete problem in
polynomial time. That is, ⇧0 can be solved by a nondeterministic
polynomial time algorithm. In other words, ⇧0 2 NP. Since ⇧0 is
arbitrary, it follows that co-NP ✓ NP. Similarly, we can show that
NP ✓ co-NP. That is, co-NP = NP.

	temp1
	temp2
	temp3
	temp4
	temp5
	temp6
	temp7
	temp8
	temp9

